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Preface

Linear algebra began as a set of ad hoc matrix algorithms for solving systems of linear
equations, and most students of science and engineering still learn it in the same way.
Teaching linear algebra purely as matrix manipulation avoids the need to introduce
mathematical abstractions, such as axiomatic definitions of vector spaces and linear
transformations. But there are tradeoffs: many simple notions get obscured behind
matrix notation, and applying matrix algebra to fields such as quantum mechanics
and real analysis, in which vector spaces and operators are often infinite-dimensional
or don’t have obvious matrix representations, is harder than applying a more abstract
theory that treats vector spaces and operators by themselves.

A few other books—perhaps the most popular is Linear Algebra Done Right by Shel-
don Axler, an inspiration for much of this book—instead deemphasize matrices and
work with abstract, axiomatically defined vector spaces and linear maps. These books
are aimed at students of pure mathematics, and though they illustrate the conceptual
unity of the subject well, they’re less helpful in teaching practical applications of ma-
trix algebra. Axler, for instance, favors theoretical elegance to the point of defining
many concepts with vital applications—most notably determinants, relegated to one
short section almost at the end of Linear Algebra Done Right—in terms of abstractions
that most scientists and engineers won’t need.

In this book, I’ve tried to fill in the gap between these two approaches, and create
something that could help two groups of readers: first, students of applied linear alge-
bra for work in applied mathematics, science, and engineering, who would like to see
the usual matrix concepts explained in more depth; and second, pure mathematicians
who learned the more abstract theory and need to apply it to matrix calculations. If
you’re in the first category, then once you get accustomed to working with axiomati-
cally defined structures and basic concepts of set theory, the higher level of abstraction
should make matrix algorithms and results easier to understand.

I’ve tried to make the introduction to thinking at a higher level of abstraction as
gentle as I could. A short introductory Chapter 0, intended more for reference than
for reading straight through, is a quick introduction to these concepts for readers that
need it. (If you’re looking for a fuller introduction, I recommend Tools of the Trade:
Introduction to Advanced Mathematics, by Paul J. Sally.)

My general goal of finding a balance between the applied and the abstract ap-
proaches to linear algebra, accessible to readers who aren’t used to the style of pure
mathematics, has led me to write the book with the following aims constantly in mind:

1. Make frequent connections between the two languages of matrix algebra and ax-
iomatic vector spaces, but keep them conceptually distinct. In particular, I usu-
ally don’t treat matrices and column vectors as linear maps and vectors in their
own right: instead, matrices are introduced as representations of more abstract
objects.
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This aim has sometimes required a bit of nonstandard notation. For instance,
while many books use R3 to denote the set of column vectors with three real en-
tries (that is, real-valued matrices with three rows and one column), I call this
space Col3(R) and reserve R3 for the set of ordered triples of real numbers with-

out matrix structure: the column vector

ab
c

 ∈ Col3(R) is the “column vector

representation relative to the standard basis” of the ordered triple (a, b, c) ∈ R3.

Keeping vector spaces and maps conceptually distinct from their matrix repre-
sentations may seem a bit pedantic, but I think this separation will clarify many
topics and prevent some conceptual confusions from ever arising: the idea that
a matrix and its diagonalization, for instance, produce two representations of the
same underlying operator is much clearer when you’re used to treating matrices
and linear operators as different objects with separate terminologies. This ap-
proach also generalizes more easily to the theory of infinite-dimensional vector
spaces required in many other fields.

2. Illustrate abstract results, as often as possible, in simple concrete settings. Many
statements and results about general vector spaces, for instance, are illustrated
with an easy-to-understand (and, when possible, easy-to-visualize) example in a
simple vector space such as R2 or R3.

3. Provide full proofs for most results, but present them in a form that I hope is
clearer for newcomers to higher mathematics. For instance, when a section in-
volves a proof of a complicated theorem, I’ve tried to explain in advance why
the theorem will eventually prove useful in order to help readers stay oriented.
I’ve tried to make the proof language easier to understand even at the cost of
some concision, including providing redundant but easier-to-understand defini-
tions and breaking up complicated deductions into explicit numbered lists of key
steps.

I haven’t yet provided a full set of exercises for every section: I anticipate that most
readers will use this book as a supplement to another book or course. But many sec-
tions (eventually, all) have an introductory list of easy “key questions” that ask about
that section’s core concepts and definitions. These questions can serve as a quick check
of comprehension and as a guide to review: if you can answer a section’s key questions
without too much difficulty, you probably remember the section’s key concepts well.
If you use flashcards to study (or a spaced repetition software such as Anki), you may
want to make the key questions into flashcards. Key questions that you should be able
to answer off the top of your head are unmarked, questions that might take a moment
of thought are marked with (⋆) , and questions that take more thought (and possibly
work with pencil and paper) are marked with (⋆⋆) .

This book is essentially complete in scope, but it is still a work in progress, and I
would appreciate any corrections or suggestions for improvement. I can be reached by
Twitter DMs (handle @cmhrrs) or email (connorh94 at-sign gmail dot com).
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Chapter 0

Introduction to set and function
concepts

This book uses notation and vocabulary for sets and functions that may be new to you
if you haven’t taken higher-level mathematics courses before. This section is a quick
introduction. Don’t need to memorize everything right away: you can learn the details
as you go along. If most of the material in this section looks familiar to you after a quick
skim, feel free to jump into the main material in Chapter 1.

0.1 Sets

A set is a collection of items, called “elements.” Sets can’t contain duplicate elements:
any object is contained in a set either zero times or one time. The order of elements in
a set also doesn’t matter. (There are whole textbooks in set theory devoted to making
these ideas as precise as possible, but these common-sense notions are good enough
for our purposes.)

To say that some object x is in the set S, we write x ∈ S or (more rarely) S ∋ x. To
write that x is not an element of S, write x /∈ S.

To write out a set, list its elements separated by commas within curly braces: {1, 2, 4}
is a set that contains the elements 1, 2, and 4. (Another way of writing the same set is
{2, 4, 1}, because elements in a set don’t have an order.) The set with no elements is
called the empty set. We can write it as {} or as ∅.

If S and T are two sets, then the set of elements that are in both S and T is called the
intersection, and denoted S ∩ T . Two sets that don’t have any elements in common are
disjoint. The set of elements in either S or T (or both) is called the union, and denoted
S ∪ T . The set of elements in S but not T is called the set difference and denoted S \ T .
For instance, if S = {1, 4, 5, 8} and T = {4, 5, 9, 10, 12}, then:

• The intersection S ∩ T is {4, 5}.

• The union S ∪ T is {1, 4, 5, 8, 9, 10, 12}.

• The set difference S \ T is {1, 8}.

• The set difference T \ S is {9, 10, 12}.

The number of elements in a set is denoted with the sign | · |. For instance, with S
and T as above, |S| = 4, |T | = 5, and |S ∪ T | = 7.

11
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If every element of S is also in T , then S is called a subset of T , and T is a superset
of S. These statements are written S ⊆ T and T ⊇ S. If T also has at least one element
that S doesn’t have (that is, S and T aren’t identical), then S is called a strict subset of
T and T is a strict superset of S. This is written S ⊂ T and T ⊃ S, or sometimes S ⊊ T
and T ⊋ S (with a slash denoting negation through the bottom bar) for absolute clarity.
The easiest way to prove that two sets S and T equal each other is often to give a proof
that S ⊆ T (that is, if x ∈ S, then x ∈ T ) and a separate proof that T ⊆ S.

A few common sets have special symbols:

• N is the set of positive (or “natural”) integers: {1, 2, 3, . . .}.

• N0 is the set of non-negative integers: {0, 1, 2, 3, . . .}. (A minority of books denote
this set by N instead, but we’ll always use N to exclude zero.)

• Z is the set of all integers: {. . . ,−2,−1, 0, 1, 2, . . .}. (The letter Z comes from the
German word Zahlen, which means “numbers.”)

• Q is the set of rational numbers. (The Q comes from quotient.)

• R is the set of real numbers.

• C is the set of complex numbers.

If X is any set, then X2 is the set of ordered pairs of elements in X . Likewise, X3

is the set of ordered triples, X4 the set of ordered quadruples, and so on. If X and Y
are possibly different sets, then X × Y is the set of ordered pairs with the first element
from X and the second element from Y .

0.2 Set-builder notation

Set-builder notation denotes a set by giving a common formula for its elements. This
notation has two variants, both of which use a formula with two parts separated by
a colon or a vertical bar. In one variant, the left-hand side of the formula specifies a
variable standing for elements of the set, and the right-hand side gives conditions For
example:

• {n ∈ Z : |n| ≤ 2} is {−2,−1, 0, 1, 2}, the set of integers with absolute value at most
2.

• {(a, b) ∈ N2 : a+ b = 5, a < b} is the set of pairs of positive integers, the first in-
teger less than the second, whose sum is 5. This set is {(1, 4), (2, 3)}, with two
elements.

In the second variant, we put a formula on the left and the allowable values of the
formula’s variables on the right. Any value of the formula is an element of the set. For
example:

• {n3 : n ∈ N} is the set of all positive cubes: {1, 8, 27, 64, 125, . . .}.

• {(n,
√
n) : n ∈ N, n ≤ 5} is the set of ordered pairs of the first five natural numbers

and their square roots: {(1, 1), (2, 1.414), (3, 1.732), (4, 2), (5, 2.236)} (rounding the
square roots).
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0.3 Functions

0.3.1 Core definitions; domain and range

A function f from one set X to another set Y , denoted f : X → Y , is a pairing of every
element of X to another element in Y . The element of Y that is matched with some
element x ∈ X is denoted f(x). (If you’ve done computer programming in languages
with static types, it may help to think of the notation f : X → Y as a type signature.)

Every element of X needs exactly one partner in Y , but not the other way around:
one element of Y could be paired with multiple values of X , or none at all. X is called
the domain of f , and Y is the codomain. The set of elements in Y that f actually uses
(i.e. every y for which there’s some x ∈ X such that f(x) = y) is called the image or
range of f and can be written f(X) or im f .

You’re probably used to seeing functions defined by a formula, such as f(x) = x2

or g(x) = cos log |x + 1|. But the definition of a function in set theory doesn’t require
the function to have a nice formula.

For example, suppose X = {1, 2, 3}, and Y = {a, b, c, d}. You might define a func-
tion f : X → Y based on the pairs (1, a), (2, c), (3, a), in which case the values of f are
f(1) = a, f(2) = c, f(3) = a. The image of f is {a, c}.

0.3.2 Injective, surjective, bijective

A function f is called:

• injective, if different elements of its domain always have different values (that is,
if f(x1) ̸= f(XRM) whenever x1 ̸= XRM );

• surjective, if the range of f is all of Y ;

• bijective, if it is both injective and surjective.

If f : X → Y is any function and S ⊆ X , we can write f |S : S → Y for the restriction
of f to S. That is, f |S(x) = f(x) if x ∈ S, and f |S(x) is undefined if x ∈ X \ S.

0.3.3 Function composition

The composition of two functions X → Y and g : Y → Z, denoted g ◦ f , is the result
of applying f and then g. (To reiterate: composition runs right to left. This is crucial to
remember, and as you may come to appreciate later, it’s arguably a defect of standard
mathematical notation.) If f(x) = y and g(y) = z, then (g ◦ f)(y) = z. Function
composition is associative. Suppose we have three functions e : W → X , f : X → Y ,
and g : Y → Z and elements w ∈ W,x ∈ X, y ∈ Y, z ∈ Z such that e(w) = x, f(x) = y,
and g(y) = z. Then (f ◦ e)(w) = y and thus g ◦ (f ◦ e)(w) = g(y) = z. Similarly,
((g ◦ f) ◦ e)(w) = (g ◦ f)(x) = z. So (g ◦ f) ◦ e = g ◦ (f ◦ e).

0.3.4 Identity and inverse functions

The identity function from a set X to itself, sometimes denoted idX : X → X , is the
function that leaves every element unchanged: idX(x) = x for every element x ∈ X .
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If f : X → Y is bijective, then it has an inverse function f−1 : Y → X that reverses
the pairing of elements defined by f : if f(x) = y, then f−1(y) = x, and vice versa. If g is
the inverse of f , then f is also the inverse of g, as you might like to convince yourself.

Even if f : X → Y isn’t bijective and so doesn’t have an inverse, we can still
define the preimage f−1(S) for any subset S ⊆ Y . This is the set {x ∈ X : f(x) ∈ S}
of every element that f maps into S. For instance, if we define the (non-injective)
function f : R → R as f(x) = x2, then the preimage of the set S = {−1, 0, 4} is
f−1(S) = {−2, 0, 2} (because f(0) = 0, f(−2) = f(2) = 4, and there’s no real number x
such that f(x) = −1).

If f : X → Y is a bijective function and g : Y → X is its inverse, then g ◦ f is the
identity function on X and f ◦ g is the identity function on Y . It’s impossible to have
g ◦ f = idX without f ◦ g = idY , or vice versa, as long as f and g are both bijective.1

(Proof: suppose f, g are bijective and g ◦ f = idX . For every y ∈ Y , take x ∈ X to be
the necessarily unique element in Y such that f(x) = y. Then since g ◦ f = idX , so
g(y) = (g ◦ f)(x) = x and so (f ◦ g)y = f(x) = y for every element y ∈ Y , so f ◦ g = idY .
The proof that f ◦ g = idY implies g ◦ f = idX is symmetrical.)

Finally, functions can be written in a shorthand form with the symbol 7→. For ex-
ample, x 7→ x2 is shorthand for the function f given by the formula f(x) = x2.

0.4 Quantifiers

0.4.1 Definitions

The symbols ∃ and ∀ are called “quantifiers” and they mean, respectively, “there exists”
and “for all.” For example, (∃x ∈ S)x > 0 means “at least one element in S is positive,”
while (∀x ∈ S)x > 0 means “every element in S is greater than zero.”

0.4.2 ∀ and ∃ can’t be reversed

These quantifiers can be combined in the same expression, but be warned that chang-
ing the order of terms with ∃ and ∀ changes the meaning of a statement! For example,
suppose X and Y are two sets. Then (∀x ∈ X)(∃y ∈ Y )x + y ∈ Z means “for every
element x in X , there’s some other element y ∈ Y , which may depend on x, such that
x + y is an integer. But (∃y ∈ Y )(∀x ∈ X)x + y ∈ Z means “there’s some specific
element of Y that, when added to every element of X , produces an integer.” This is a
much stronger claim. For instance, the pair of sets X = {0.4, 0.7} and Y = {0.3, 1.6}
satisfies the first statement (if you take 0.4 from X , then you can choose 1.6 from Y ;
and if you take 0.7 from X , then you can take 0.3 from Y ) but not the second (there’s
no element y ∈ Y —in fact, no real number at all—such that y+0.4 and y+0.7 are both
integers).

As a more concrete example that also illustrates why quantifiers can disambiguate
thoughts that would be ambiguous if expressed in English, 2, let S be the set of all
humans in the world, and let L(x, y) be a predicate3 representing the sentence “x loves

1If one of f or g isn’t bijective (so it doesn’t have a real inverse), then it’s possible for f ◦ g but not
g ◦ f to be an identity. Consider, for instance, the functions f, g : N → N on the set of positive integers
defined as f(n) = max(n− 1, 1) and g(n) = n+ 1.

2Borrowed, I believe, from A Modern Formal Logic Primer by Paul Teller.
3Predicate is a logicians’ term for a function that takes the values true and false.
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y”: that is, it’s a function Then the sentence “Everybody loves somebody” could be
interpreted in two ways:

• (∀x ∈ S)(∃y ∈ S)L(x, y): that is, “Everybody loves at least one person.”

• (∃y ∈ S)(∀x ∈ S)L(x, y): that is, “There is some specific person, y, who is loved
by everyone in the world.”

These are quite clearly not equivalent statements!
A big portion of adjusting to higher mathematics is getting comfortable with work-

ing with nested quantifiers. Even in earlier mathematics, you’ve probably seen and
(likely) been initially confused by a few definitions that used multiple layers of quanti-
fiers, though probably not with our logicians’ notation here. Perhaps the best example
is the epsilon–delta criterion for a function f on the real numbers to be continuous at
some point x0:

(∀ϵ ∈ R+)(∃δ ∈ R+)(∀x ∈ R)(|x− x0| ≥ δ or |f(x)− f(x0)| < ϵ).

0.4.3 Negation of quantifier statements

If P (x) is some predicate (which you can think of as a function that maps possible
values of x to the set {true, false}) and P (x) is the negation of P , then the negation of
(∀x)P (x) is (∃x)P (x) and the negation of (∃x)P (x) is (∀x)P (x). This should be rela-
tively intuitive: if the statement “P (x) is true for all x ∈ S” is false, then there must be
some element x ∈ S for which P (x) is false. This extends to multiple quantifiers: for
instance, the negation of (∀x)(∃y)(∀z)P (x, y, z) is (∃x)(∀y)(∃z)P (x, y, z).

As a more concrete example, the negation of the statement (∀x ∈ S)x < 0 (that is,
S contains only negative numbers) is (∃x ∈ S)x ≥ 0 (S contains at least one positive
number).

I once took a formal logic course that used the symbol ¬ to denote negation, and the
instructor referred to these equivalences somewhat playfully as the “swimmy-past”
rule: in ¬(∀x)P (x), the ¬ statement can “swim past” the ∀ term, in the process chang-
ing it to ∃, producing the result (∃x)¬P (x). Symmetrically, if you start with (∃x)¬P (x),
then the ¬ symbol can swim to the left and flip ∃ back to ∀. Similarly, ¬(∃x)P (x)
would turn into (∀x)¬P (x). It’s also clearer how this rule can be applied one quanti-
fier at a time: for instance, ¬(∀x)(∃y)(∀z)P (x, y, z) turns into (∃x)¬(∃y)(∃z)P (x, y, z)
by the first application, and then (∃x)(∀y)¬(∃z)P (x, y, z) on the second and finally
(∃x)(∀y)(∃z)P (x, y, z) on the third.

These negation formulas underlie the most commonly used proof technique in this
book: proof by contradiction. Suppose, for example, that we’re studying a class of ob-
jects called frobnicators, each of which have associated real numbers with some special
property called transmogrifying values.4 We may have to prove a statement like this:

Proposition. Every frobnicator has at least one positive transmogrifying value.

This statement, spelled out in symbols, would be:

(∀F ∈ set of frobnicators)(∃x ∈ R)(x > 0 and x is a transmogrifying value of F .

4These obviously aren’t real concepts; the point of choosing fake ones is to focus your general atten-
tion on the abstract form of the argument, not on any particular mathematical object.
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To prove this, we can disprove the negation, namely:

(∃F ∈ set of frobnicators)(∀x ∈ R)(x ≤ 0 or x is not a transmogrifying value of F ).

(The negation of “P and Q” is “not-P or not-Q,” and vice versa.) With this in mind, we
can start writing a proof by assuming the existence of a counterexample, following the
negation:

Proof. Suppose that F is a frobnicator that does not have a positive transmogrifying
value. By the Transmogrifiability Lemma, F must have at least one transmogrifying
value; call it x. Necessarily, x ≤ 0. Therefore, . . . [and try to prove that F or x must have
some impossible property, such as contradicting another known result on frobnicators]

0.4.4 Quantification over empty sets

Any statement involving ∀ is true if the set in the ∀ statement is empty, and any state-
ment involving ∃ is false. For instance, if S = ∅, then (∀x ∈ S)x > 0 and (∀x ∈ S)x < 0
are both true.

This may seem a bit paradoxical, but the convention for ∃ should at least make
sense: it’s hard to say that a sentence of the form “there exists some element of S such
that . . . ” could be true if there are no elements of S to begin with. And to keep the
common-sense rule that “there is at least one x such that P” and “for all x, not-P”
should be opposite, the rule for ∀ follows. This will save us from having to insert a lot
of special cases into theorem definitions.

0.5 The colon-equals definition symbol

Sometimes we’ll use the symbol := to mean equality by definition: a new name on the
left refers to the known object given on the right. =: is symmetrical: the known object
is on the left and the new name is on the right. This lets us reserve the symbol = for
expressing an equality between two preexisting objects, not giving one known object a
new name.

For example, we might express a result on two sets X and Y as:

Therefore, X∩Y is the set {n3 : n ∈ N, n ≤ 10} of the first ten positive cubes.
Call this new set S.

Or we can use the new symbol to abbreviate this as:

Therefore, S := X ∩ Y = {n3 : n ∈ N, n ≤ 10}.

If this sounds confusing, don’t worry: it will be clearer in practice. And in any case,
most writers will use = to mean definitions when it’s clear from the context that a new
object is being defined, and use := only when needed for disambiguation.



Chapter 1

Vector spaces and associated concepts

1.1 Motivation; vectors in physics

Key questions.

1. What is a vector in physics? What does it mean to break a vector into compo-
nents?

2. What two properties of vectors in physics are the basis for our more generalized
idea of vector spaces?

3. What does it mean for a function to be “linear”?

To oversimplify, linear algebra is the study of functions called linear transformations.
When you took algebra in middle or high school, you probably learned that “linear
functions” are functions of the form f(x) = ax + b, and their graphs are straight lines.
The definition of linearity in linear algebra, though, is a bit different, and only some
of the “linear” functions from high school algebra are “linear” in the linear algebra
definition—namely, the function f(x) = ax, whose graphs are lines through the origin.
(This is a good opportunity for a general warning: different fields of mathematics often
use the same word for slightly different concepts!)1

Linear functions such as f(x) = ax have two important properties. First, if you
multiply the input to f by some factor k, you cause the output to be multiplied by the
same amount: f(kx) = kf(x). Mathematicians will say as a shorthand that a function
f with this property “respects multiplication.”

Second, if you add two inputs before giving them to f , you get the same result as
if you give them to f separately and then add the outputs: f(x + y) = f(x) + f(y).
Mathematicians would say that f “respects addition.” To summarize: when you add
two inputs to f together, or when you scale one input up, the output acts the same
way.

Of course, f is simple: it takes one input and gives one output. But you can find
more complicated functions with multiple inputs or outputs that fit the same principle.
Let’s consider functions of the class f(x, y) = ax+by, where a and b are some constants.
Then f is a function with two inputs and one output, but it also, in its own way, respects
addition and multiplication. If we define addition on pairs of numbers component-by-
component as (x1, y1) + (x2, y2) = (x1 + X2, y1 + y2), then f respects addition: f(x1 +

1Functions like f(x) = ax+ b for b ̸= 0 are “affine” in the vocabulary of linear algebra, but we won’t
talk about affine functions much.
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x2, y1+y2) = f(x1, y1)+f(x2, y2) = ax1+ax2+by1+by2. If we define multiplication of a
single number k by a pair of numbers (x, y) component-by-component, as k × (x, y) =
(kx, ky), then f also respects multiplication: f(kx, ky) = kax + kby = k(ax + by) =
kf(x, y).

Linear algebra, in essence, is the classification of linear functions like these. In linear
algebra, functions are defined on abstract mathematical structures called vector spaces,
which are sets of elements called vectors. A linear function sends each element of one
vector space to an element of a possibly different vector space. The function f(x, y) =
kx + ky, for instance, maps ordered pairs of real numbers to single real numbers, and
the set of real numbers and the set of real number pairs are both vector spaces. In
mathematical symbols, we denote the vector space of real numbers by R, and the vector
space of pairs of real numbers by R2.

You may be asking what exactly a vector space is, and why R and R2 are examples.
To see why abstract vector spaces are a useful concept, it will help to look at another
field with a more concrete concept called “vector”: in physics, a vector is a quantity
with both magnitude and direction. Velocity, force, momentum, and electric field, for
example, are “vector” quantities: an object’s velocity might be four meters per second
northwest, a force might be 10 newtons upward, an electric field may be 20 volts per
meter southward at an angle 25 degrees below horizontal. And vectors can be broken into
components showing their extent along different axes. For example, a velocity of 4 m/s
northwest can be broken into components in the cardinal directions as 2

√
2 ≈ 2.83 m/s

west, and 2
√
2 ≈ 2.83 m/s north. You could represent this vector as an ordered pair

relative to a coordinate axis, such as (−2.83, 2.83) with an east-pointing x-axis and a
north-pointing y-axis (or, in three-dimensional space, (−2.83, 2.83, 0) with a vertical z-
axis). Quantities such as mass, energy, electric potential, and electric charge, on the
other hand, are “scalar”: they’re just magnitudes that don’t point anywhere.

Finally, you can do two important arithmetic operations on vectors in physics, and
these operations motivate the more general definition of “vector” in pure mathemat-
ics. First, you can add vectors component-by-component. If one force F1 of 1 new-
ton is pulling an object north, say, and another force F2 of 3

√
2 newtons is pulling it

northeast—broken into components, that’s (0, 1) and (3, 3)—then the resulting force
can be calculated comes from adding the components together to get (3, 4). So the to-
tal force F1 + F2 is 5 newtons, pulling at a compass heading of arctan(3/4) = 36.9◦, a
little bit north of northeast. Geometrically, F1 + F2 looks like the endpoint of F2 if you
moved it to start at F1’s end, or vice versa.

F1

F2

F1 + F2

Second, you can multiply vectors by scalars, producing another vector that points
in the same (or the opposite) direction. If E, for example, is an electric field of 10
newtons per coulomb pointing to the north, then 3E is a field of 30 N/C pointing
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north. Likewise, E/2 is 5 N/C pointing north, and −2E is 20 N/C pointing south. If
q is a charge of 4 coulombs (a scalar quantity), then qE is a force vector of 40 newtons
pointing north—that is, the vector of force that the electric field E would exert on an
object with charge q. (For the most part, in pure mathematics, we won’t deal with
quantities that have physical units attached, but all the concepts transfer into physics
quite directly.)

A vector space in linear algebra is just a set of objects that we’ll call “vectors” and
that have these two properties. You can add vectors to other vectors, and you can
scale individual vectors up and down, to get results in the same vector space. And a
vector space is a set of vectors together with definitions of addition and scaling. The
elements of a vector space could be a wide variety of objects that have lots of additional
properties beyond just these two operations, and we’ll see important subcategories of
vector spaces in which the vectors have other operations defined on them as well. But
to qualify as a vector space, those two operations, as long as the way they’re defined
satisfies a few important properties, are all that a set needs. We’ll see examples soon
enough.

Answers to key questions.

1. A vector in physics is a quantity that has both a magnitude and a direction. Break-
ing a vector into components means taking a set of coordinate axes and writing
it as a list of projected lengths onto each axis.

2. The two properties of vectors in physics that give rise to our more general notion
of vectors in linear algebra are that vectors can be added to each other and also
scaled up or down.

3. A function is linear if vector operations on its inputs create the same effect on its
output: adding two inputs also adds their outputs together, and scaling an input
scales the resulting output.

1.2 Abelian groups

Key questions.

1. What is an abelian group? What four properties must the operation on an abelian
group satisfy?

2. How many identities can an abelian group have? How many inverses can any
element of an abelian group have?

3. (⋆) Is the set of integers with the operation of addition an abelian group? What
about the set of even integers? What about the set of real numbers? What about
the set of positive real numbers?

4. (⋆) Why isn’t the set of complex numbers with the operation of multiplication an
abelian group? Can you make it an abelian group by removing any elements?

5. (⋆⋆) Consider the set of nonnegative real numbers with the operation a⋆b = |a−b|
(the absolute value of a − b). Which abelian group axioms does this structure
satisfy?
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6. (⋆⋆) Consider the set of real numbers R with the operation a⋆b = a+b+ab. Prove
that if you remove one real number x, then R \ {x} is an abelian group with the
same operation ⋆. What is x?

To define vector spaces formally, we need a more basic concept: a field. A field is a
set of numbers that has addition, subtraction, multiplication, and division by nonzero
elements.2 Some examples of fields that you might already be familiar with are the
rational numbers Q, the real numbers R, and the complex numbers C. One set of num-
bers that isn’t a field is the integers Z, because the quotient of two integers isn’t always
an integer—while on the other hand, the quotient of two (nonzero) real numbers is
always a real number.

The best way to define fields is to use an even more basic concept: an abelian group.
An abelian group is a set of elements G with an binary operation ⋆ “defined” on them.
“Binary” means that the operation takes two inputs and produces one output. You can
imagine constructing an operation by going through every ordered pair of elements
(a, b) ∈ G (including the pairs that include the same element twice) and choosing some
element c ∈ G to be the value of a ⋆ b. (There’s nothing stopping us from choosing a ⋆ b
to be one of a or b.)

But for an operation to make a set into an abelian group, the operation can’t be com-
pletely arbitrary. It has to satisfy a few properties, which are modeled on the properties
of addition of ordinary numbers:

1. Associativity: For all triples of elements a, b, c ∈ G, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c). That is, if
x = a⋆b and y = b⋆c, then x⋆c = a⋆y. This axiom also has to be true when two or
three of the elements a, b, c are the same. (In general, whenever mathematicians
make a statement of the form “for all x, y ∈ S for some set S . . . ,” this includes if
x and y are the same element of S.

This axiom implies its own generalization to expressions with four or more terms:
all possible ways to parenthesize these have the same value. For instance, w ⋆ x ⋆
y ⋆ z can be parenthesized in five ways: as ((w ⋆ x) ⋆ y) ⋆ z, as (w ⋆ x) ⋆ (y ⋆ z),
as w ⋆ (x ⋆ (y ⋆ z), as (w ⋆ (x ⋆ y)) ⋆ z, or as w ⋆ ((x ⋆ y) ⋆ z). If the operation ⋆ is
associative, though, then all of these operations must have the same value. For
instance, ((w ⋆ x) ⋆ y) ⋆ z = (w ⋆ x) ⋆ (y ⋆ z) is just the axiom (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)
with a = w ⋆ x, b = y, c = z. (You may want to prove for yourself that the other
ways of parenthesizing w⋆x⋆y ⋆z are all equivalent as well, perhaps by showing
that in any parenthesization, the parentheses can always be shifted “all the way
to the left” to form (((w ⋆ x) ⋆ y) ⋆ z), and then try writing a general proof that
works for five or more items.)

Since associativity works for any number of items, we can and will write expres-
sions like w ⋆x ⋆ y ⋆ z without providing parentheses to clarify the order in which
the ⋆ operators should be evaluated.

2. Commutativity:3 a ⋆ b = b ⋆ a for all pairs a, b ∈ S.
2In physics or multivariable calculus, you may have learned about “vector fields”: regions of space

with a vector defined at each point. Vector fields are a completely different concept that we won’t ever
discuss in this book; don’t get confused.

3The term “abelian,” incidentally, refers to this axiom: a group whose binary operation satisfies the
other axioms in this list but not commutativity is just called a “group,” not an “abelian group.” The
theory of general groups is much more complicated than the theory of abelian groups, but we won’t
need it for linear algebra.
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This axiom also implies its own generalization to expressions with three or more
terms: we can reorder such expressions in any way that we like. For instance,
a ⋆ b ⋆ c = b ⋆ a ⋆ c = b ⋆ c ⋆ a.

3. Identity: There’s some fixed element, conventionally called e, such that, for every
element a ∈ G, a⋆e = e⋆a = a. (To reemphasize, the same e has to work for every
element a.)

This axiom also implies that there can’t be more than one identity. Suppose e1
and e2 are identities of the same abelian group G. Then e1 ⋆ e2 = e1 (because e2
is an identity, so a ⋆ e2 = a for any a ∈ G). But also e1 ⋆ e2 = e2, because e1 is an
identity and so e1 ⋆ a = a. And since e1 ⋆ e2 = e2 and e1 ⋆ e2 = e1, then e1 = e2.

4. Inverses: For every element a ∈ G, there’s some element b ∈ G such that a ⋆ b =
e. (We could have a = b; in particular, the identity element is always its own
inverse.)

As with the identity of an abelian group, the inverse of any particular element is
also always unique. Suppose that a is an element of G with two inverses b1, b2.
Consider the expression b1⋆a⋆b2. We can parenthesize this as (b1⋆a)⋆b2 = e⋆b2 =
b2, or as b1 ⋆ (a ⋆ b2) = b1 ⋆ e = b1. But since the operation ⋆ is associative, these
two expressions have to be equal, so b1 = b2.

These are important enough definitions that we’ll put them in their own conspicu-
ous definition paragraphs.

Definition. A binary operation on a set S is a function that takes an ordered pair of elements
from S and returns an element in S.

Definition. An abelian group is a set with a binary operation that satisfies the four axioms
of associativity, commutativity, identity, and inverses.

Here are some examples of sets (with an associated operation) that are abelian
groups, and a few that aren’t.

1. The integers (commonly written with the symbol Z) with the operation of ad-
dition are an abelian group. Associativity and commutativity are true because
(a + b) + c = a + (b + c) and a + b = b + a for all integers a, b, c ∈ Z. The identity
element e is 0 (because a+ 0 = 0 + a = a), and the inverse of a is the negative −a
(because a+ (−a) = 0).

2. The set of even integers (commonly written 2Z) with the operation of additition
is also an abelian group.

3. The set of odd integers (which we’ll denote 2Z+1) with the operation of addition
is not an abelian group, because the sum of two odd integers is not an odd integer.

4. The set of integers under subtraction is not an abelian group, because subtraction
is not associative and commutative: in general, a − b ̸= b − a and (a − b) − c ̸=
a− (b− c).
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5. The set of integers under multiplication is almost but not quite an abelian group.
Multiplication is associative and commutative ((ab)c = a(bc) and ab = ba), and
1 is a multiplicative identity (1 × a = a × 1 = a for every integer a). But most
integers do not have integer inverses: the solution x to ax = 1 (that is, x = 1/a) is
generally not an integer when a is an integer.

6. The set of nonzero real numbers under multiplication, however, does satisfy the
axiom of inverses: the multiplicative inverse of any real number a is 1/a. We
have to leave zero out because anything times zero is zero, so there’s no solution
to 0x = 1. But multiplication is still defined as an operation on R \ {0}: if a and
b are two nonzero real numbers, then ab is a nonzero real number as well. This
means that removing 0 from R doesn’t mean removing the result of the group
operation on elements that are left in the group.

7. The real numbers (including zero) under addition are also an abelian group. Zero
is the identity and negatives are inverses, just like with Z.

Answers to key questions.

1. An abelian group is a set of elements G, together with a binary operation ⋆ that
takes ordered pairs of elements in G and produces single elements in G. This
operation must obey the axioms of associativity (a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all
a, b, c ∈ G), commutativity (a ⋆ b = b ⋆ a for all a, b ∈ G), identity (there’s some
element e ∈ G such that for every other a ∈ G, a ⋆ e = e ⋆ a = e), and inverses (for
every element a ∈ G there’s some b ∈ G such that a ⋆ b = e).

2. Only one, for both questions.

3. The set of integers, set of even integers, and set of real numbers are all abelian
groups with the operation of addition. The set of nonnegative real numbers isn’t
because it fails the axiom of identity: there’s no positive real number e such that
a + e = a for every other positive real number a. (The only additive identity in
the real numbers is zero, and of course zero isn’t positive.)

4. The set of complex numbers with the operation of multiplication fails the axiom
of inverses: the identity for multiplication is 1, but 0 doesn’t have an inverse
because there’s no real number b such that 0b = 1. If we take 0 out of the real
numbers, then every element of R \ {0} has a multiplicative inverse (specifically,
the inverse of a is 1/a), and R \ {0} satisfies the other abelian group axioms.

5. This structure doesn’t satisfy associativity: in general, a ⋆ (b ⋆ c) = |a − |b − c||
doesn’t equal (a ⋆ b) ⋆ c = ||a− b| − c|. One simple example: 4 ⋆ (3 ⋆ 2) = 4 ⋆ 1 = 3
but (4 ⋆ 3) ⋆ 2 = 1 ⋆ 2 = 1.

It does satisfy all other abelian group axioms: commutativity (a− b = −(b− a) so
|a − b| = |b − a|), identity (|a − 0| = |0 − a| = a for all nonnegative real numbers
a, so 0 is an identity), and inverses (every element is its own inverse because
|a− a| = 0).

6. Let’s start by checking which abelian group axioms are satisfied by R with the
operation a ⋆ b = a + b + ab. This structure satisfies the axiom of associativity:
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a ⋆ (b ⋆ c) = a + (b ⋆ c) + a(b ⋆ c) = a + b + c + bc + ab + ac + abc and (a ⋆ b) ⋆ c =
(a ⋆ b) + c + (a ⋆ b)c = a + b + ab + c + ac + bc + abc, and these expressions
equal each other (you just have to rearrange the terms to make the expressions
identical). It also satisfies the axiom of commutativity (b ⋆ a = b + a + ba, which
of course equals a + b + ab because addition and multiplication of real numbers
are also commutative). It also satisfies the axiom of identity, with 0 as the identity
element (a ⋆ 0 = 0 ⋆ a = a).

It does not, however, satisfy the axiom of inverses: in particular, −1 doesn’t have
an inverse. Since 0 is the identity element, the inverse of any element a is the
solution b to a ⋆ b = 0; that is, a+ b+ ab = 0. The solution is b = a

a+1
, but this isn’t

defined when a = −1.

But if we remove −1, then R \ {−1} is an abelian group with the operation ⋆:
the only solutions to a ⋆ b = −1 are when a = −1 or b = −1 (you can factor
a ⋆ b = a + b + ab = −1 as (a + 1)(b + 1) = 0), so taking −1 out of the set
doesn’t remove any values of ⋆ on inputs other than −1, so ⋆ is still defined as an
operation on R \ {−1}.

1.3 Fields

Key questions.

1. How many operations are defined on fields? Which operation makes the whole
field into an abelian group? Which operation makes the field with one element
removed an abelian group, and which element do you have to remove?

2. Which of the three field axioms determines how the two operations defined on a
field interact with each other?

3. (⋆⋆) Let S be a set containing two elements {s, t}. Define two operations on S:
addition as s + s = t + t = s and s + t = t + s = s, and multiplication as
ss = st = ts = s and tt = t. Prove that S with these two operations is a field.

1.3.1 Operations and axioms

A field is a special kind of abelian group. In particular, a field is a set F with two binary
operations: addition and multiplication. Just like with normal algebra, we’ll write
addition with the + sign and multiplication with no sign at all: ab means a times b. We
need to define these operations to satisfy a few axioms, modeled after how addition
and multiplication work in familiar number systems such as the real numbers and
rational numbers.

1. F is an abelian group with addition as the binary operation: addition is associative
((a+ b) + c = a+ (b+ c) for all triples a, b, c ∈ F) and commutative (a+ b = b+ a
for all pairs a, b ∈ F). There’s also an additive identity, which we’ll denote 0, such
that a + 0 = 0 + a, and every element in a has an additive inverse (which we’ll
write −a) such that a+ (−a) = (−a) + a = 0.

We can define subtraction of an element as addition of its additive inverse: that
is, we’ll write a− b to mean a+ (−b).
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2. The set F \ {0}—that is, F without the additive identity—is an abelian group with
multiplication as the binary operation, with a multiplicative identity 1. We’ll denote
multiplication of field elements by writing them together without an operator
sign. Every element a must have a multiplicative inverse (we’ll write it a−1) such
that aa−1 = 1. Division by an element is just multiplication by its multiplicative
inverse; that is, we can write a/b for ab−1.

3. Multiplication and addition obey the distributive property a(b + c) = ab + ac.
(Just like with normal algebra, in expressions involving fields, multiplication has
higher precidence than multiplication, so ab+ ac means (ab) + (ac).)

One immediate consequence is that anything times 0 is itself: we know that 0 +
0 = 0, so for for an arbitrary element x, we have 0x = (0 + 0)x = 0x + 0x, and
adding −0x to each side of the equation 0x = 0x + 0x gives us 0 = 0x. A further
consequence is that −1 (that is, the negative multiplicative identity) times any
element is its additive inverse: 0 = 0x = (−1 + 1)x = (−1)x+ x.

4. The additive and multiplicative identities are different: 0 ̸= 1. This axiom rules
out the so-called “field with one element”: any structure that satisfies the other
field axioms but has 0 = 1 must have only one element (because x = 1x = 0x = 0
for any possible other element x).

Again, let’s put this in a short summary paragraph with conspicuous typography.

Definition. A field is an abelian group (whose group operation is called “addition”) with
an additional operation called “multiplication,” defined such that the group with the additive
identity removed is an abelian group under multiplication, and multiplication and addition
obey the distributive property a(b+ c) = ab+ ac.

You may have noticed that all of these axioms are satisfied by a few familiar num-
ber systems: for instance, the rational numbers Q, the real numbers R, and the com-
plex numbers C. These axioms let you manipulate algebraic expressions for elements
of fields just like how you’re used to doing in regular algebra. Introductory linear al-
gebra mostly deals with R and C. But it’s worth knowing that fields have an axiomatic
definition, because if we can prove that a structure satisfies the field axioms, then we
know that every result that we can prove just from the field axioms—that is, without
using any special property of an individual field such as R or C—will apply to that
structure automatically, no matter how weird its definition is. And the majority of
results in this book do apply to arbitrary fields.

1.3.2 Basic properties

Most algebraic manipulations and simple deductions on familiar fields such as R also
apply to any axiomatically defined field. We outlined a few of these as we were pre-
senting the field axioms. We’ll just present one additional result on axiomatic fields
that we will frequently rely on implicitly.

Proposition. The product ab of two arbitrary elements a, b of any field equals zero if and only
if either a = 0 or b = 0.

Proof. A “P if and only if Q” statement is really two statements: P implies Q, and Q
implies P . We often have to prove these separately. We’ll do that here:
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1. If a = 0 or b = 0, then ab = 0. First, we’ll prove that 0b = 0 for all field elements b.
We start with the equation 0+0 = 0 (because 0 is an additive identity, so x+0 = x
for all x), and multiply this equation on the right by a to get 0b = (0+0)a = 0a+0a.
If we add −(0b), the additive inverse of 0b, to each side of this equation, then we
get 0 = 0b.

The proof that a0 = 0 for all field elements a is symmetrical.

2. If ab = 0, then either a = 0 or b = 0. Suppose ab = 0 but a ̸= 0. Then we can
multiply by a−1 on the left to get a−1(ab) = a−10. But a−1(ab) = (a−1a)b = b
(axiom of associativity of multiplication), and a−10 = 0 (because we just proved
that anything times 0 is 0). That is, ab = 0 and a ̸= 0 together imply b = 0, so
ab = 0 implies either a = 0 or b = 0.

The proof of statement 2 crucially relies on the existence of multiplicative inverses.
There is a more general structure than a field in abstract algebra, called a ring, in which
addition and multiplication exist and follow all of the field axioms except that multipli-
cation doesn’t have to have inverses and may not be commutative. There are examples
of rings in which two nonzero elements have a product that equals zero. (On the other
hand, even in a ring, the product of anything with zero, on the left or on the right, is
also zero: our proof of statement 1 didn’t use the axioms of multiplicative commuta-
tivity or multiplicative inverses.) The general theory of rings isn’t relevant to linear
algebra, though, so we’ll leave it off here.

One more useful result:

Proposition. The additive inverse of any field element a is (−1)a (that is, the additive inverse
of the multiplicative identity, times a).

Proof. We know that 0a = 0 for all a, and further that 0 = 1 + (−1) by definition of
additive inverses. So by the distributive property, 0 = (1 + (−1))a = 1a + (−1)a, so 1a
and (−1)a are additive inverses.

1.3.3 Fields of characteristic 2

Though the field axioms let us prove that several familiar results from R and C also
apply in arbitrary fields, there are a few that don’t. Most relevant for our purposes,
there are fields in which the crazy-seeming equations 1 = −1 and 1 + 1 = 0 are true:
the multiplicative identity is its own additive inverse.

One example is the field defined in key question 3 of this section. In this field, s is
the additive identity 0 and t is the multiplicative identity 1, with addition defined as
0 + 0 = 1+ 1 = 0 and 0 + 1 = 1+ 0 = 0, and multiplication as 0× 0 = 0× 1 = 1× 0 = 1
and 1× 1 = 1. (If you’re familiar with modular arithmetic on integers, then you’ll note
that arithmetic operations on this set are just integer operations modulo 2.)

There’s a special term for fields with this property:

Definition. A field in which 1 + 1 = 0 has characteristic 2.



26 CHAPTER 1. VECTOR SPACES AND ASSOCIATED CONCEPTS

The “characteristic” of a field in general is a slightly more abstract notion: a field
is said to have characteristic n if n is the smallest positive integer 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0, and

zero if no such integer exists. We won’t cover the general theory of field characteristics
much more in this book, but it’s worth flagging that a though most results in this book
apply to vector spaces over arbitrary fields, a few of them don’t (or still do, but need
special proofs) when the underlying field has characteristic 2. We’ll flag those as they
come up.

If you only need linear algebra for engineering or physics, then you’re likely only
to ever use R and C as underlying fields, so you can safely ignore all discussion of
characteristic-2 fields. If you are going to study more pure mathematics, though, you’ll
need to know the caveats.

One small result:

Proposition. In a field of characteristic 2, every element, not just the multiplicative identity,
is its own additive inverse.

Proof. Let a be an arbitrary element of the field. We’ve already shown that in any field
regardless of characteristic, 1a = a (because 1 is defined as the element that has this
property) and that (−1)a is the additive inverse of a. But in characteristic 2, 1 = −1, so
(−1)a = 1a = a.

Answers to key questions.

1. Fields have two operations: addition and multiplication. Addition makes the
whole field into an abelian group (with the identity denoted 0). A field is only an
abelian group under multiplication of 0 is removed, because anything times 0 in
a field equals 0.

2. The axiom of distributivity a(b+c) = ab+ac governs how field operations interact.

3. To prove that S is a field, we have to check that it obeys three field axioms: first,
that it is an abelian group under addition; second, that it is an abelian group
under multiplication once the additive identity is taken out; and third, that mul-
tiplication and addition follow the distributive property.

The first step, proving that S is an abelian group under addition, requires check-
ing that it satisfies the four abelian group axioms:

• Associativity is the most tedious axiom to check: you have to check that a +
(b + c) = (a + b) + c for each of the 23 = 8 possible assignments of the
variables a, b, c to values in {s, t}. Checking each one is straightforward,
though. For instance, for the assignment a = t, b = t, c = s, you can compute
a+(b+c) = t+(t+s) = t+t = s and similarly (a+b)+c = (t+t)+s = s+s = s,
so a+ (b+ c) = (a+ b) + c is true for this assignment of variables.

• Commutativity is shorter: you have to check a+ b = b+ a for the four assign-
ments of a and b to values in {s, t}. This is obviously true if a = b, and it’s
true for the assignments (a, b) = (s, t) and (a, b) = (t, s) because addition is
defined as s+ t = t+ s = s.
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• The identity for addition is s, as s+s = s and s+t = t+s = s by the definition
of addition.

• Each element of s is its own inverse under addition: s+ s = s and t+ t = t.

We next have to check that S minus its additive identity s is an abelian group
under multiplication. This is straightforward: S \ {s} contains only one element,
namely t, and multiplication is defined as an operation on S\{s} because the only
product of elements in S\{s}, namely the product of t with itself, is also in S\{s}.
You can quickly check that associative and commutative axioms (ab)c = a(bc)
and ab = ba are true for the assignment a = b = c = t. Finally, S \ {s} has a
multiplicative identity (namely t), and its only element (namely t) has an inverse
(namely t).

Finally, we have to check the distributive identity a(b + c) = ab + ac for all eight
assignments of variables a, b, c to elements of S. We can simplify our work a lot
though, by going back to the original definitions of addition and multiplication
to note that tx = x and sx = s for both x = s and s = t. So if a = s, then
s(b+ c) = s (both if b+ c = x or if b+ c = y) and similarly sb+ sc = s+ s = s, so
s(b+ c) = sb+ sc regardless of the values of b and c. This proves the distributive
identity for four of the eight possible variable assignments. For the other four
assignments, namely those with a = y, we have t(b+ c) = b+ c and tb+ tc = b+ c,
again regardless of the values of a+ c.

This field, incidentally, is just the integers with addition and multiplication de-
fined modulo 2, with s = 0 and t = 1. In other books, you may see it denoted
as Z/2Z or as F2. We won’t cover fields with finite numbers of elements much in
this book, and they’re not that useful for most applications of linear algebra, but
they appear a lot elsewhere in pure mathematics.

1.4 Vector spaces

Key questions.

1. How many operations are defined between two elements of a vector space? How
many are defined between an element of a vector space and an element of its base
field?

2. List the five vector space axioms.

3. What vector space is denoted by R2? How are addition and multiplication de-
fined in this space? What is the additive identity?

4. (⋆) Suppose that we defined scalar multiplication in R2 as simply k(x, y) = (x, y);
that is, multiplication of a vector by any scalar simply returns the vector un-
changed. Vector addition is unchanged. The resulting structure satisfies every
vector space axiom except one. Which one does it break?

5. (⋆) Prove that in any vector space, if k ̸= 0 and v ̸= 0, then k0 ̸= 0. (Hint: if k ̸= 0
and kv = 0, then what is (k−1k)v?)
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6. (⋆⋆) Define a wacktor space as a set of elements W with operations of vector addi-
tion and scalar multiplication by elements of a field F that satisfy all vector space
axioms except the axiom of multiplicative identity. That is, W is an abelian group
under vector addition, scalar multiplication distributes over vector and field ad-
dition, and scalar multiplication is pseudo-associative with field multiplication,
but there may be an element w such that 1w ̸= w. (One example of a wacktor
space that is not a vector space is R2 with multiplication defined as k(x, y) =
(0, ky) and addition defined like normal, as (x1, y1) + (x2, y2) = (x1 + y1, x2 + y2).)

Suppose W is a wacktor space that is not a vector space. Prove that there is some
element w ∈ W \{0} such that 1w = 0. (Hint: you know there’s some element w′

such that 1w′ ̸= w′. What can you say about w′ − 1w′?) Prove that this element
w satisfies kw = 0 for all scalars k ∈ F, not just 1.

1.4.1 Definition and axioms

We’re finally ready to define vector spaces. A vector space V over a field F—specifying
the field is crucial: vector spaces always have an associated field—is a set of elements
with two associated operations. One operation, vector addition, takes pairs of elements
of V and produces other elements of V . The other operation, scalar multiplication, takes
one input in V and the other input (important!), called a scalar, from the base field F,
and produces another input in V . The geometric intuition behind scalar multiplication
is scaling up or down: 2v is twice the size of v, and 1

3
v is one-third the size of v. And

−v (that is, −1 times v) is v with the direction reversed.
As usual, we’ll denote vector addition with the sign + and multiplication without

any written sign, with parentheses to clarify order of operations when necessary. These
two operations must satisfy the following axioms:

1. V with addition is an abelian group. This implies four sub-axioms, the familiar
properties of an abelian group:

(a) Associativity: u+(v+w) = (u+v)+w for all triples of elements u,v,w ∈ V .
(In this book, we’ll use boldface letters to denote elements of vector spaces.
In handwriting, you’ll see vectors marked with arrows over the top: u⃗, v⃗, w⃗.)

(b) Commutativity: u+ v = v + u for all pairs of elements u,v ∈ V .

(c) Identity: there’s some fixed element 0 ∈ V such that v + 0 = v for every
v ∈ V .

(d) Inverses: every vector v has some additive inverse w such that v + w = 0.
We’ll denote the additive inverse with the minus sign (w = −v).

2. Multiplication distributes over vector addition: that is, k(u + v) = ku + kv for all
k ∈ F and u,v ∈ V .

3. Multiplication distributes over field addition: that is, (a+b)v = av+bv for all a, b ∈ F
and v ∈ V .

4. Multiplication in F and scalar multiplication in V follow the pseudo-associativity
(sometimes also called compatibility) property (ab)v = a(bv). That is, the scalar ab
times v equals the scalar a times the vector bv. (We call this pseudo-associativity
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because (ab)v and a(bv) involve operations of different kinds: (ab)v involves one
multiplication of two scalars and a multiplication of the resultant scalar by a vec-
tor, while a(bv) involves two scalar-by-vector multiplications.)

5. Multiplicative identity: scalar multiplication by the field multiplicative identity 1
leaves vectors unchanged; that is, 1v = v.

Again, to summarize in

Definition. A vector space over a field F is an abelian group V (whose operation is called
vector addition) with an additional scalar multiplication operation that takes an input
from F. These operations must obey the following additional axioms: scalar multiplication
distributes over field addition, scalar multiplication distributes over vector addition, and field
multiplication is pseudo-associative (a.k.a. compatible) with vector multiplication. F is called
the base field of V .

1.4.2 Basic consequences of vector space axioms

From these axioms, we can prove a few basic facts regarding multiplication by the
zero vector, or by the scalars 0 and −1, quite similar to the analogous results for field
multiplication. The proofs look quite similar, as well. We will often rely on these
results implicitly: citing them for every relevant small algebraic manipulation would
get tedious. Throughout, V is a vector space and F is its base field.

1. 0v = 0 for any v ∈ V . Proof: 0 = 0 + 0 because 0 is an additive identity, so
0v = (0+ 0)v = 0v+0v by the distributive property. Subtracting (that is: adding
the additive inverse of) 0v from each side of the equation 0v = 0v + 0v leaves
0 = 0v.

2. k0 = 0 for any k ∈ F. Proof: k0 = k(0 + 0) = k0 + k0, and subtracting k0 from
each side leaves 0 = k0.

3. If kv = 0, then either k = 0 or v = 0. Proof: suppose kv = 0 but k ̸= 0. Then k−1

exists, and k−1(kv) = k−10. But k−10 = 0 (because, as we just proved, anything
times 0 is 0), and k−1(kv) = (k−1k)v = 1v = v (by the pseudo-associativity and
multiplicative identity axioms). So kv = 0 implies k = 0 or v = 0.

4. −1 times any vector is its additive inverse. Proof: for any vector v we have
0 = 0v = (−1 + 1)v = (−1)v + 1v by field axiom 3, and 1v = v by vector space
axiom 7, so v and −1v add to 0.

In most vector spaces, there’s a natural way to define addition and multiplication
that obviously fits all of the axioms. We chose this set of axioms because they’re specific
enough to describe the vector spaces that we care most about—the sets of ordered
pairs, triples, and so on of real or complex numbers—while also general enough that
we can use them to prove results that apply to other spaces as well.
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1.4.3 Additive inverses in characteristic 2 and otherwise

There’s one more result that will be useful further down the line:

Proposition. Suppose F is a field that doesn’t have characteristic 2, and V is a vector space
over F. Then:

1. If F has characteristic 2, then every element of V is its own additive inverse.

2. If F does not have characteristic 2, then the only element of V that is its own additive
inverse is 0.

Proof. We’ve already proved that for k ∈ F and v ∈ V arbitrary (and regardless of the
characteristic of F), kv = 0 if and only if k = 0 or v = 0.

Let v be an element in V . that is its own additive inverse: that is, such that v+v = 0.
Then v+v = 1v+1v = (1+1)v by the axioms of multiplicative identity and distribution
over field addition, so v is its own additive inverse if and only if 1 + 1 = 0 (that is, F
has characteristic 2) or v = 0.

1.4.4 Examples

So, what are some examples of vector spaces? The most common vector spaces that
we’ll investigate in this book—and, indeed, the only vector spaces that some other
books on linear algebra ever work with—are the spaces Fn for some field F and pos-
itive integer n. This is the set of all ordered lists of n elements of the field F. For
example, R3 is the set of all triples of real numbers; some elements of R3 are (2, 2, π)
and (−1, 0,

√
2+e420.69). For another example, C2 is the set of pairs of complex numbers,

and has elements such as (1 + i,−3 + π2i).
The base field for Fn is just F, and scalar multiplication and addition work compo-

nent by component. For example, take two elements u = (2, 5) and v = (0.3,−2) of R2.
Then 2u = (4, 10): each component of 2u is twice the component of u in the same po-
sition. And u− v = (1.7, 7): each component of u− v is the corresponding component
of u minus the corresponding component of v.

R2 and R3 are especially important because they can be represented geometrically.
R2 is the Cartesian plane; any element (x, y) of R2 can be represented as as a line from
the origin to the point (x, y). Likewise, R3 is three-dimensional Cartesian space. Re-
sults about the algebraic structure of R2 and R3 therefore have important consequences
for geometry—and, of course, for many applied fields that rely on geometry, such as
computer graphics.

Finally, n can be 1. Every field can act as a vector space over itself, with its own
elements serving as both vectors and scalars: “vector addition” and “scalar multiplica-
tion” are just regular addition and multiplication in the field.

There are a few other spaces that we’ll encounter as well:

1. FN is the set of all infinite sequences (a1, a2, a3, . . .) of elements in F. Multiplication
and addition in FN, again, work component by component.

2. One important subset of FN, denoted F∞, is the set of sequences with only a finite
number of nonzero elements. This is also a vector space. (You should convince
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yourself that it’s closed under multiplication and addition: that is, if you take a
sequence with only a finite number of nonzero elements and multiply every entry
by a scalar, or if you take two such sequences and add corresponding entries, then
the result also has a finite number of nonzero elements.)

3. The set of functions defined on the real line or the complex plane is a vector space.
Addition and multiplication are defined point-by-point: for example, if f(x) = x2

and g(x) = sinx, then f + g is the function x 7→ x2 + sinx, and −2g is the function
x 7→ −2 sinx. The base field of this vector space is the field from which the values
of the functions are drawn. For instance, the set of complex-valued functions on
the real line is a vector space over C.

4. Various subspaces of function spaces are also vector spaces. For example, the set
of continuous functions on a certain interval is a vector space, because sums and
scalar products of continuous spaces are also continuous. The set of functions
that are differentiable n times is also a vector space. (This observation lets us use
the theory of linear algebra to solve several large classes of differential equations.
We’ll see one example later.)

Answers to key questions.

1. Vector spaces have one operation defined on pairs of vectors (namely vector ad-
dition) and one operation defined on pairs of a vector and a field element (namely
scalar multiplication).

2. The five vector space axioms are: (1) the vector space is an abelian group with the
operation of addition, (2) scalar multiplication distributes over vector addition,
(3) scalar multiplication distributes over field addition, (4) scalar multiplication
follows a pseudo-associative property with field multiplication, and (5) 1 is a
multiplicative identity for scalar multiplication.

3. R2 is the set of ordered pairs of real numbers. Addition and multiplication are
defined component by component as (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and
k(x, y) = (kx, ky), and the additive identity is (0, 0).

4. The axiom that doesn’t hold is distribuitivity of scalar multiplication over field
addition. For instance, if v = (1, 0), then 1v and 2v would both equal (1, 0) with
our new definition of scalar multiplication, but distributivity over field addition
would require 2v = (1 + 1)v = 1v + 1v = (1, 0) + (1, 0) = (2, 0).

5. If kv = 0 and k ̸= 0, then by the multiplicative identity axiom 1v = v, but by
the pseudo-associativity axiom 1v = (k−1k)v = k−1(kv) = k−10 = 0 (because the
vector space axioms imply that any scalar times 0 equals 0), so v = 0. So there
can’t be elements k ∈ F \ {0},v ∈ V \ {0} such that kv = 0.

6. Let w′ be an element in W such that w′ ̸= 1w′, and define w = w′ − 1w′. Then

1w = 1(w′ − 1w′) (by definition of w′)
= 1w′ − 1(1w′) (scalar multiplication distributes over vector addition)
= 1w′ − (11)w′ (pseudo-associativity)
= 1w′ − 1w′ = 0.
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So 1w = 0. By immediate consequence, kw = (k1)0 = k0 = 0 for any scalar k (our
proof that anything times 0 equals 0 did not rely on the axiom of multiplicative identity,
so it’s still valid in wacktor spaces).

1.5 Linear combinations and span

Key questions.

1. What is a “linear combination” of a set of vectors?

2. What does it mean for a linear combination to be “trivial”?

3. What’s the relationship between linear combinations and span? Why does the
span of a set of vectors always include 0?

4. (⋆) Prove that the sets {(1, 2, 3), (1, 1, 1)} and {(100, 200, 300), (105, 205, 305)} have
the same span in R3.

In the last section, we defined a vector space V over a field F as a set of elements
called “vectors.” Vector spaces allow two operations: adding two vectors together, and
scaling a single vector through multiplication with an element in F.

1.5.1 Definitions

A linear combination of a set S of vectors is a sum of a finite number of scalar multiples
of the elements of S. (Generic vector spaces don’t have a concept of infinite sums.4)
For example, some linear combinations of two vectors u,v are 2

3
u−v (in a vector space

over Q, R, or C), or −u+ πv (in a vector space over R or C), or (1+ i)u+(
√
2− 3i)v (in

a vector space over C)—or just −4v, giving u a coefficient of zero.
More generally:

Definition. A linear combination of a set of vectors S from a vector space V is either:

1. An expression c1v1 + · · ·+ cnvn, where c1, . . . , cn are elements of the base field of V and
v1, . . . ,vn are elements of S. If the coefficients c1, . . . , cn are all 0, then this is expression
is called trivial; if at least one coefficient is not 0, then it’s nontrivial.

2. The value of this expression as an element of V .
4To define the sum of an infinite series, we need a concept of a limit of the sequence of partial sums of

this series, and limits of sequences require a concept of distance between vectors (or, equivalently, size of the
difference between two vectors) so that terms in a sequence can get arbitrarily close to the sequence limit.
The standard vector space axioms don’t have a concept of distance. Some vector spaces let you define
vector size using an additional structure called a norm: for instance, you could use the Pythagorean
theorem to define the norm of an element (x, y) ∈ R2 as

√
x2 + y2, and thus the distance between two

elements as
√
(x2 − x1)2 + (y2 − y1)2. If this norm satisfies a few axioms, then you can use it to define

the limit of a sequence. We’ll discuss a few examples of spaces with norms, most importantly Rn and
Cn, in Chapter 7. But these structures don’t exist in generic vector spaces, and there are spaces for which
no norm exists: for example, vector spaces over a field with a finite number of elements, which we won’t
talk about much in this book but which are important in other fields of higher mathematics.
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We won’t be so pedantic as to insist on a distinction between “linear combination”
and “value of a linear combination” except when context requires. We will also con-
sider an empty sum, containing zero terms, to be a linear combination with value 0.

The trivial linear combination 0v1 + · · ·+ 0vn, of course, equals 0, the zero element
of V . This is because the field element 0 times any vector is 0, and the sum of any
number of terms of 0 is also 0.

Nontrivial linear combinations, however, don’t necessarily have to have nonzero
value. Many important properties of a set of vectors are associated with whether they
can produce a nontrivial linear combination that equals 0. We’ll discuss these proper-
ties for the rest of the book (including in the coming sections), as well as the question
of howe we can determine, given a set of vectors, whether it can produce nontrivial
linear combinations with value 0.

One last definition:

Definition. The span of a set of vectors in S is the set of values of every possible linear combi-
nation in S.

So if S = {v1, . . . ,vn} (and usually in this book, S will be finite), the span of S is
the set of all sums of the form c1v1 + · · · + cnvn, with the coefficients c1, . . . , cn drawn
from the base field. By convention, the span of the empty set contains the zero vector
but nothing else: span ∅ = {0}.

In R2 and R3, spans have geometric interpretations. The span of a set containing
just one vector (in any vector space) is the set of all scalar multiples of that vector:
span{v} = {cv : c ∈ R}. In R2 and R3, therefore, the vectors in span{v} are all the
vectors that lie on a line through the origin of R2 or R3 that contains span{v} (except,
of course, if v = 0, in which case span{v} = {0}).

The span of a set of two vectors {u,v}, meanwhile, is the plane that contains the
origin, u, and v—unless one of u or v is 0, or if u and v are scalar multiples of each
other: u = kv. In this latter case, any linear combination au + bv can be rewritten as
just (ka+ b)v with v alone, so span{u,v} = span{v}.

1.5.2 Finding sets with identical span to a given set

Given a set S, you can often find a set of simpler or easier-to-visualize vectors with the
same span as S by using this result:

Lemma. Suppose V is a vector space, S is some subset of V , and v ∈ V is some linear
combination v = c1s1+ · · ·+cnsn, where s1, . . . , sn are elements of S and the scalars c1, . . . , cn
are nonzero. Then if you add v to S and remove any one of the vectors s1, . . . , sn, you get a set
with the same span as S.

Proof. Let’s prove that replacing s1 with v leaves spanS unchanged: that is,

span{s1, . . . , sn} = span{v, s2, . . . , sn}.
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and, as a consequence,5

span({s1, . . . , sn} ∪ S ′) = span({v, s2, . . . , sn} ∪ S ′)

where S ′ contains the vectors of S other than s1, . . . , sn. (The same argument works for
any of the vectors si, not just s1.)

We can rewrite any linear combination of v, s2, . . . , sn as as a linear combination of
s1, s2, . . . , sn just by substituting c1s1+· · ·+cnsn for v. Similarly, any linear combination
involving s1 can be rewritten as one that involves v, s2, s3, . . . , sn, because if v = c1s1 +
c2s2 + · · ·+ cnsn, then a simple rearrangement gives

s1 =
1

c1
v − c2

c1
s2 − · · · − cn

c1
sn.

As long as c1 ̸= 0, the expression on the right can substitute for s1.

Let’s put this result into practice: starting with S = {(40, 100, 120), (1, 3, 4)} ⊂ R3,
we’ll find a simpler subset of R3 with the same span as S. First, we can replace
(40, 100, 120) with 1

10
(40, 100, 120) = (4, 10, 12): a nonzero scalar multiple of a single

vector v is certainly a linear combination that includes v with nonzero coefficient. So
we have a new set S ′ = {(4, 10, 12), (1, 3, 4)} with the same span as S.

Now note that (4, 10, 12) − 3(1, 3, 4) = (1, 1, 0). This new vector (1, 1, 0) can replace
either vector in S ′ without changing its span. If we choose the first vector, then we get
the set S ′′{(1, 1, 0), (1, 3, 4)}.

Similarly, 1
2
(1, 3, 4) − 1

2
(1, 1, 0) = (0, 1, 2); this vector can replace (1, 3, 4) without

changing the span S ′′, giving S ′′′ = {(1, 1, 0), (0, 1, 2)}. The span of S ′′′ (which is also
the span of S) is the set of all values of linear combinations a(1, 1, 0) + b(0, 1, 2) =
(a, a+ b, 2b), where a and b are freely chosen from R.

We can continue this process to find other sets with the same span as S. For in-
stance, if we replace (1, 1, 0) with (1, 1, 0)−(0, 1, 2) = (1, 0,−2), we get {(1, 0,−2), (0, 1, 2)},
giving a general form (a, c,−2a+2c) for elements of spanS. (You can see that this form
is equivalent to (a, a+ b, 2b) by setting c = a+ b.)

This process is a less systematic version of an algorithm called Gauss–Jordan elimi-
nation developed for solving systems of linear equations. We’ll present Gauss–Jordan
elimination fully in Chapter 4.

Answers to key questions.

1. A linear combination of a set of vectors is an expression consisting of a sum of
scalar multiples of vectors in the set.

2. A linear combination is trivial if every scalar coefficient in the linear combination
is zero.

5In general, if A,B,C are three sets of vectors from the same space and spanA = spanB, then
span(A ∪ C) = span(B ∪ C). Any element v ∈ span(A ∪ C) is a linear combination of elements of
A ∪ C, which can be broken down as v = v1 + v2 where v1 is a linear combination from A and v2 is a
linear combination from B. But if spanA = spanB, then we can also write v1 as a linear combination
from B and reuse the same linear combination for B, so their sum v1 + v2 is a linear combination from
B ∪ C.
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3. The span of a set of vectors S is the set of all values taken by linear combinations
of elements of S, with the scalar coefficients chosen freely from the base field.
This always includes 0 because 0 is the value of the trivial linear combination.

4. If we alter a set S by replacing any vector v with a linear combination of elements
of S that includes v with a nonzero coefficient, then the span of S doesn’t change.
(The linear combination doesn’t necessarily have to include vectors besides v.) So
we can replace (1, 2, 3) in the set {(1, 2, 3), (1, 1, 1)} with the vector 100(1, 2, 3) =
(100, 200, 300), giving us the set {(100, 200, 300), (1, 1, 1)}. Next we can replace
(1, 1, 1) with (100, 200, 300)+5(1, 1, 1), giving {(100, 200, 300), (105, 205, 305)}. This
set has the same span as the original set.

1.6 Subspaces

Key questions.

1. What is a subspace of a vector space? List the three axioms that a subspace must
satisfy. What element must every subspace include?

2. What does it mean for a subspace to be trivial?

3. Why is the span of any set of vectors a subspace?

4. (⋆) Is {(x, y) ∈ R2 : x = 0} a subspace of R2? What about {(x, y) ∈ R2 : x ̸= 0}?
Why or why not?

5. Is the intersection of two subspaces always a subspace? What about the union of
two subspaces?

6. What are the two definitions of the sum of two subspaces? Why are these defini-
tions equivalent?

7. What is a spanning set of a subspace? Is every subspace a spanning set of itself?

In the last section, we introduced the concepts of linear combinations and span. As
a reminder: a linear combination of a set of vectors is a sum of scalar multiples of the
vectors. The span of a set S of vectors is the set of all vectors that can be written as
linear combinations of elements of S—that is, the set of all vectors that you can get by
using vector addition and scalar multiplication on the elements of S.

1.6.1 Spans are subspaces; definition of subspace

Now let S = {s1, . . . , sn} be a set of elements of a vector space V . Note two special
properties of the set spanS:

1. If v = c1s1 + cnsn is in spanS, then so are all of its multiples: kv = k(c1s1 + · · · +
cnsn) = (kc1)s1 + · · ·+ (kcn)sn.

2. If v1 = a1s1 + · · · + ansn and v2 = b1s1 + · · · + bnsn are linear combinations of
elements of S, then so is their sum: v1 + v2 = (a1 + b1)s1 + · · ·+ (an + bn)sn.
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That is, all sums and scalar multiples of elements of spanS are also in spanS, so
spanS acts like a self-contained vector space in its own right. These properties are also
true if S contains an infinite number of vectors.

There’s a special term for a subset of a larger vector space V that satisfies these
properties of spanS: a subspace of V . In general:

Definition. A subset W of a vector space V is a subspace (or vector subspace, if the context
requires us to be more specific) if it satisfies these axioms:

1. Closure under addition: If u and v are in W , then so is u+ v.

2. Closure under multiplication: If v is in W , then so is kv for every scalar k.

3. Non-emptiness: W is not the empty set. (This means that 0 ∈ W , because if W has at
least one element v, it must contain 0v = 0 by closure under multiplication.)

We could unify axioms 1 and 2 into one sentence: Any linear combination of elements
of W is also an element of W . This means that any subspace that includes S must con-
tain every linear combination of S—that is, it must contain spanS. Since spanS is
also a subspace, it follows that spanS is the smallest subspace that contains S: if W
is a subspace of V that also contains S, then W must contain (or equal) spanS. An-
other consequence is that W is any subspace of V , then spanW = W—and, therefore,
span(spanS) = spanS for any set S.

Every vector space V , except the one-element vector space V = {0}, has at least
two subspaces. The first is V itself: every vector space is a subset of itself. The second
is {0}. These subspaces are called “trivial subspaces.” (If V = {0}, then both of these
trivial subspaces are the same, and V has no other subspaces.)

To solidify our understanding of subspaces, let’s take a look at a few subsets of R2

and check whether they’re subspaces.

1. W1 = {(x, y) ∈ R2 : x + 2y = 0} is a subspace. If u = (a, b) and v = (c, d) are
both in W1, then a + 2b and c + 2d are both zero, so (a + b) + 2(c + d) = 0. That
is, u + v = (a + c, b + d) is also in W1. So W1 satisfies the axiom of closure under
addition. Similarly, ku = (ka, kb) is in W1 for any scalar k, because if a + 2b = 0
then ka + 2kb = 0, so W1 also satisfies closure under multiplication. Finally, you
can check that 0 = (0, 0) is in W1, so W1 is nonempty.

2. W2 = {(x, y) ∈ R2 : x+ 2y = 1} can’t be a subspace because it doesn’t include 0.

3. W3 = {(x, y) ∈ R2 : x = 0 or y = 0 or both} contains 0, and it satisfies closure
under multiplication: any multiple of a vector of the form (x, 0) or (0, y) also has
be of the same form. But it fails closure under addition: for instance, (1, 0) and
(0, 1) are both in W3, but their sum (1, 1) isn’t.

4. W4 = {(x, y) ∈ R2 : x is an integer} satisfies closure under addition: if a and c
are integers, then so is a + c; so if (a, b) and (c, d) are in W4, then so is their sum
(a+ c, b+ d). But it fails closure under multiplication: for instance, v = (1, 0) is in
W4, but its scalar multiple 1

2
v = (1

2
, 0) isn’t.

One final bit of vocabulary.

Definition. A set S is a spanning set of a subspace W of a vector space V if spanS = W .
(This definition allows W = V .)
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1.6.2 Subspace intersections and sums

If W1 and W2 are subspaces of V , then their intersection W1∩W2 is also a subspace. Ev-
ery sum or multiple of elements in W1 is in W1, and every sum or multiple of elements
of W2 is in W2, so any sum or multiple of elements of both W1 and W2 must also be in
both subspaces. Finally, the intersection W1 ∩ W2 has to contain at least 0, so it is not
empty. This line of argument generalizes to any number of subspaces, even an infinite
number of subspaces. (Infinite intersections are what they sound like: an element is in
an intersection of an infinite collection of sets if it’s included in every single set in the
collection.)

The union of two subspaces, on the other hand, isn’t necessarily a subspace: the sum
of an element of W1 and an element from W2 doesn’t have to be W1 or W2. For instance,
suppose W1 ⊂ R2 contains all vectors of the form (x, 0) with a zero second component,
and W2 ⊂ R2 contains all vectors of the form (y, y) with two equal components. Then
(1, 0) is in W1 and (1, 1) is in W2, but their sum (2, 1) isn’t in W1 or W2. The space W3

in the list of examples in the last section is another union of two subspaces (namely
span{(1, 0)} and span{(0, 1)}) that isn’t a subspace itself.

The closest thing to unions of subspaces is sums. Subspace sums are defined in
terms of vector sums; to be precise:

Definition. The sum (or subspace sum, when disambiguation is necessary) W1 +W2 of two
subspaces W1,W2 of a larger space is the set {w1 +w2 : w1 ∈ W1,w2 ∈ W2} of all sums of a
vector from W1 and a vector from W2.

It turns out that W1 + W2 also satisfies the vector subspace axioms. To see that it
satisfies closure under addition and multiplication, note that if u = w1a + w2a and
v = w1b +w2b are sums of a vector from W1 and a vector from W2, then so is u + v =
(w1a+w1b)+ (w2a+w2b), as is any multiple ku = kw1a+ kw2a. (Remember that vector
addition is associative and commutative, so we can reorder and reparenthesize vector
sums however we want.) Subspace sums are also nonempty: since 0 is always in W1

and W2, so 0+ 0 = 0 is an element of W1 +W2.
We have another equivalent definition:

Proposition. W1 + W2, as defined above, is the intersection of every subspace that contains
both W1 and W2.

Proof. Let’s write S for the collection of subspaces that contain both W1 and W2, and
write X for the intersection of every subspace in S. (This means that X is a subset of
every element of S.) Now, W1+W2 (as we’ve just shown) is a subspace, and it contains
both W1 and W2, so W1 +W2 ∈ S and so X ⊆ W1 +W2.

Conversely, since a subspace must contain every linear combination of any of its
elements, every subspace in S must contain any linear combination constructed from
elements of W1 ∪W2. In particular, every subspace in S must contain the set of linear
combinations made up from adding one element of W1 to one element of W2: that is, it
must contain W1 +W2. And since W1 +W2 is a subset of everything in S, it must also
be a subset of X . So we’ve proved W1 +W2 ⊆ X as well as X ⊆ W1 +W2.

And, finally, a third equivalent definition:

Proposition. W1 +W2, as defined above, is the smallest subspace that contains both W1 and
W2, in that if X is any other such subspace, then W1 +W2 ⊆ X .



38 CHAPTER 1. VECTOR SPACES AND ASSOCIATED CONCEPTS

Proof. Any subspace X that contains W1 and W2 must be one of the elements of the
subspace collection S that we defined in the previous proposition. But W1 +W2 is the
intersection of everything in S, and the intersection of any collection of sets must be
contained in any individual set in the collection, so W1 +W2 ⊆ X .

If this discussion of subset sums seems too abstract, a short example may be useful.
Let W1 ⊂ R4 be the set of all vectors of the form (x, y, 0, 0) and W2 be the set of all
vectors of the form (0, y, z, 0). Then W1 +W2 contains all vectors of the form (x, y, z, 0).
Any such vector can be broken into sums such as (x, y, 0, 0) + (0, 0, z, 0) or (x, 2x +
3y, 0, 0) + (0,−x− 2y, z, 0), where the first term is in W1 and the second is in W2.

Subspace sums can also be defined for three or more subspaces. For example, W1 +
W2 +W3 = {w1 +w2 +w3 : w1 ∈ W1,w2 ∈ W2,w3 ∈ W3}.

1.6.3 Subspaces, sums, and intersections of spans

Finally, a few facts about subspaces, sums, and intersections of spans. First, if S1 ⊆ S2,
then spanS1 ⊆ spanS2, because every linear combination of elements of S1 is also a
combination of elements of S2.

Second, if spanS1 = W1 and spanS2 = W2, then span(S1 ∪ S2) = W1 + W2. Any
element from W1 +W2 can be broken into an element of W1 (i.e. a linear combination
from S1) plus an element of W2 (i.e. a linear combination from S2, and the sum of these
linear combinations is obviously an element from S1∪S2. Conversely, you can evaluate
any linear combination from S1 ∪ S2 by adding all the terms from S1 to get an element
of W1, then adding the remaining terms in S2 to get an element of W2; their sum has to
be in W1 +W2.

The analogous statement for intersections, though, isn’t true: span(S1 ∩ S2) is a
subspace of, but doesn’t have to equal, W1 ∩ W2. For instance, define S1, S2 ⊂ R3 as
S1 = {(1, 0, 0), (0, 1, 0)} and S2 = {(1, 0, 0), (1, 1, 0)}. Then W1, W2, and W1 ∩W2 are all
equal: they are the set of vectors of the form (x, y, 0) with a third component of zero.
(We could write any such vector as a linear combination x(1, 0, 0)+y(0, 1, 0) of elements
from S1, or as a linear combination (x− y)(1, 0, 0) + y(0, 1, 0) of elements from S2.) But
span(S1 ∩ S2) is the smaller set of multiples of (1, 0, 0): that is, the set of vectors of the
form (x, 0, 0).

Answers to key questions.

1. A subspace W of a vector space V is a subset that acts like a vector space in
its own right with the same operations inherited from V . The three axioms are
closure under addition (any sum of elements of W is also in W ), closure under
multiplication (the product of any element of W with any scalar is also in W ), and
non-emptiness (W has at least one element). Every subspace includes 0, because
closure under addition means that if any vector w is in W , then so is 0w = 0.

2. A subspace of V is trivial if it is either V itself if {0}.

3. The span of any set S of vectors is a subspace because the sum of two linear
combinations c1v1 + · · · cnvn and dnv1 + · · ·+ dnvn of vectors in S is also a linear
combination (c1 + d1)v1 + · · ·+ (cn + dn)vn of the same vectors in S, and so is any
scalar product k(c1v1 + · · ·+ cnvn) = (kc1)v1 + · · ·+ (kcn)vn.
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4. {(x, y) ∈ R2 : x = 0}, containing all elements of R2 with a zero in the first compo-
nent, is a subspace (call it W ). We can check the three axioms: it is closed under
addition (if w1 = (0, y1) and w2 = (0, y2) are in W then so is w1+w2 = (0, y1+y2)),
it’s closed under multiplication (if w = (0, y) ∈ W then kw = (0, ky) ∈ W ), and
it’s non-empty ((0, 0) is one element).

On the other hand, {(x, y) ∈ R2 : x ̸= 0} (call this set R2 \W ) is not closed under
addition or multiplication. For instance, v1 = (1, 1) and v2 = (−1, 1) are in R2\W ,
but v1 + v2 = (0, 2) and 0v1 = (0, 0) are not.

5. The intersection of two subspaces is always a subspace. The union of two sub-
spaces may not be a subspace, because it may not be closed under addition: sums
of elements from different subspaces may not be in either subspace. For instance,
W1 = {(x, 0) : x ∈ R} and W2 = {(0, y) : y ∈ R} are both subspaces of R2, and
though (1, 0) and (0, 1) are both in W1 ∪W2, their sum (1, 1) is not.

6. The two definitions of a sum W1 +W2 of two subspaces of V are (1) the set of all
sums of an element of W1 and an element of W2, subspace of V that includes both
W1 and W2 (“smallest” in the sense that a

1.7 Linear independence

Key questions.

1. What does it mean for a set to be “linearly independent”?

2. (⋆) If S is a set of vectors, is it possible to have two vectors u,v ∈ spanS such
that only one linear combination of elements of S equals u, but multiple linear
combinations of elements of S equal v? Give an example, or explain why not.

3. (⋆) Prove that if S is not linearly independent, then we can remove at least one
vector from S without affecting spanS.

In the last sections, we introduced the notion of a span of a set of vectors (that is,
the set of values that you can achieve by multiplying and adding elements of S; this
is always guaranteed to be a vector subspace) and a spanning set of a subspace (that is,
any set whose span is the subspace). Besides span, the other most important property
of a set of vectors is whether it is linearly independent. Roughly speaking, a linearly
independent set S generates its span without redundancy: any element in its span is
the value of one and only one linear combination of elements in S, and no element of
S can be removed without shrinking its span.

1.7.1 Motivating examples

Let’s start with a simple example: take two vectors u = (2, 3i) and v = (−4i, 6) in C2,
and let S = {u,v}. What is spanS?

Your first answer should be that spanS is the set of all linear combinations au+bv =
(2a − 4ib, 3ia + 6b), where a, b are freely chosen elements of C. But notice something
peculiar about S: its elements are scalar multiples of each other—specifically, v =
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−2iu. So any linear combination of u and v can be rewritten as a scalar multiple of u
alone: au+ bv = (a− 2ib)u, and spanS is just the set of linear multiples of u.

Another example: Define S ⊂ R3 as the set containing the three vectors u =
(1,−2, 3), v = (−1,−4, 1), and w = (5, 8, 3). What is spanS? Your first answer, again,
should be the set of all linear combinations au + bv + cw = (a − b + 5c,−2a − 4b +
2c, 3a+ 8b+ 3c) with freely chosen coefficients a, b, c ∈ R.

But we can rewrite any element of S as a linear combination of the others: for
instance, w = 2u − 3v. So any linear combination au + bv + cw can be rewritten in
terms of u and v alone as (a + 2c)u + (b − 3c)v. Conversely, we can write any linear
combination xu+ yv as a linear combination au+ bv + cw with an appropriate choice
of a, b, c (the simplest choice is just a = x, b = y, c = 0, but there are others). So xu+yw,
where x and y are arbitrary real numbers, is also a valid general form for any element in
spanS, and spanS = span{u,v}. (It turns out that spanS = span{u,w} = span{v,w}
as well.)

1.7.2 Equivalent definitions of linear independence

We can define linear independence in a few different ways (and then prove that these
ways are all equivalent). To motivate these definitions, let’s look at some properties of
the two sets S above that weren’t linearly independent.

1. In each case, one of the vectors in S is a linear combination of the others, so a
linear combination involving that vector can be written without it. Some proper
subset of S, therefore, has the same span as S itself.

2. By rearranging the expression for one vector in terms of the others, we can get
a nontrivial linear combination of the vectors in S that equals 0. For example, if
v = 2u+ 3w, then 2u− v + 3w = 0.

3. Any vector in spanS can be written in multiple ways just by adding a multiple
of the linear combination for 0. For instance, if 2u − v + 3w = 0, then any other
linear combination au + bv + cw is equal to (a + 2k)u + (b− k)v + (c + 3k)w for
any scalar k.

Reversing these observations gives us a definition—in fact, several definitions—for
linear independence.

Definition. Let S be a subset of a vector space V . Then S is linearly independent if it is
empty, or if it is nonempty and satisfies one of these equivalent properties:

1. Every element in spanS is the value of only one linear combination of the elements of S.

2. The only linear combination of elements of S that generates 0 is the trivial linear combi-
nation, which gives every element of S the coefficient zero.

3. There exists some element v ∈ spanS that is the value of only one linear combination
of elements in S.

4. No element of S can be written as a linear combination of the others.
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5. There is no strict subset S ′ of S (meaning that S contains at least one element not in S ′)
such that spanS ′ = spanS. (That is, removing an element from S always shrinks the
span.)

The claim that the properties in this definition are equivalent probably isn’t imme-
diately clear, so let’s prove it.

Proposition. The five properties in the list above are equivalent for nonempty sets S.

Proof. We’ll prove the implications 1 =⇒ 2 =⇒ 3 =⇒ 1, 1 =⇒ 4 =⇒ 2, and
4 ⇐⇒ 5. I’ll leave it to you to convince yourself (perhaps by drawing a diagram) that
with this chain of implications proved, the truth of any one property implies the truth
of the other four.

• 1 implies 2: If every element in spanS is equal to only one linear combination in
S, then 0, which is an element of the span of every set (including the empty set),
can only have one linear combination. And the trivial linear combination always
equals 0, so if 0 is the value of only one linear combination, it can’t be the value
of any nontrivial linear combination.

• 2 implies 3: If 0 is equal to only one linear combination in S, then there must exist
some element in spanS equal to only one linear combination in S, namely 0.

• 3 implies 1: We’ll prove the contrapositive: not-1 implies not-3. Suppose that that
property 1 is false for some set S: that is, some vector v ∈ spanS can be written
as two different linear combinations v = a1s1 + · · · + ansn = b1s1 + · · · + bnsn,
where ai ̸= bi for at least one index 1 ≤ i ≤ n and s1, . . . , sn are all elements of S.
Then subtracting these linear combinations gives a nontrivial linear combination
(a1−b1)s1+ · · ·+(an−bn)sn for 0. We can add this to any other linear combination
c1s1+ · · ·+ cnsn to get another linear combination (a1+ c1− b1)s1+ · · ·+(an+ cn−
bn)sn. So every element of spanS is the value of multiple linear combinations,
and property 3 is false for the set S.

• 1 implies 4. Every element s ∈ S is already a linear combination of elements of S in
at least one way (namely, the linear combination that includes only the element
itself, with coefficient 1). If S satisfies property 1, then s can’t equal any other
linear combinations from S, and in particular, it can’t be any linear combination
whose values are drawn from S \ {s}.

• 4 implies 2. We’ll prove that not-2 implies not-4. Suppose that we have some
nontrivial linear combination c1s1 + · · ·+ cnsn = 0 of elements of S (and suppose
that the coefficients c1, . . . , cn are all nonzero). If n = 1, then s1 = 0, and 0 can
always be written as a linear combination of the other elements of S (namely, the
trivial linear combination). Otherwise, we have s1 = − c2

c1
s2−· · ·− cn

c1
sn exhibiting

s1 as a nontrivial linear combination of other elements of S.

• 4 implies 5. We’ll prove that not-5 implies not-4. Suppose we have a proper subset
S ′ ⊊ S such that spanS ′ = spanS. Let s be some element in S but not in S ′. If
spanS = spanS ′, then s ∈ spanS ′, so s can be written as a linear combination of
elements of S ′—that is, of elements of S other than itself.
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• 5 implies 4. We’ll prove that not-4 implies not-5. If some element s ∈ S is a linear
combination of the others, then any linear combination that includes s can be
rewritten in terms of the other elements, so S \ {s} is a strict subset of S that has
the same span as s.

One implication of the definition that’s worth pointing out explicitly: if S contains
the zero vector 0, then it can’t be linearly independent. In this case, 0 is the value of a
nontrivial linear combination from S (namely, the one-term linear combination k0 for
any nonzero scalar k), and it’s also the value of a linear combination from the elements
of S not including itself (namely, the trivial linear combination). In either case, it can be
eliminated without changing the span of S. (This is true even if 0 is the only element of
S, because by convention, span ∅ = span{0} = {0}, and a sum of zero elements counts
as a trivial “linear combination” of zero vectors.)

1.7.3 Infinite linear independent sets

One final result that will be occasionally useful:

Proposition. An infinite set of vectors is linearly independent if and only if all of its finite
subsets are linearly independent.

Proof. Let S be an infinite subset of a vector space V . If S has a finite linearly dependent
subset T , then any nontrivial linear combination from T with value 0 is also a linear
combination from S. The contrapositive is that if S is linearly independent, then all of
its subsets have to be as well. (This argument doesn’t actually depend on the infinitude
of S; it’s a general proof that any subset of a linearly independent set is also linearly
independent.)

Conversely, suppose S is linearly dependent; that is, c1s1 + · · ·+ cnsn = 0 for some
coefficients ci and vectors s1 chosen out of S. Then {s1, . . . , sn} is a linearly depen-
dent finite subset of S. The contrapositive is that if all of S’s finite subsets are linearly
independent, then S is as well.

Answers to key questions.

1. A set is linearly independent if the only linear combination from the set that
equals the zero vector is the trivial combination with all coefficients equal to zero.

2. This isn’t possible: if we subtract one linear combination equal to v from another,
then we get a nontrivial linear combination equal to 0. We can add this linear
combination to any linear combination for u to get another linear combination
for u, so u has multiple linear combinations.

3. If S is not linearly independent, then there’s some linear combination c1v1+ · · ·+
cnvn of vectors in S that equals 0 with at least one of the coefficients c1, . . . , cn
not equal to zero. Suppose that cn ̸= 0 (we can order the vectors and coefficients
if we need to). Then any linear combination that includes vn can be changed to
an equivalent linear combination with v1, . . . ,vn−1 by replacing vn with − c1

cn
v1 −

· · · − cn−1

cn
vn−1. This means that S and S \ {vn} have the same span.
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1.8 Bases

Key questions.

1. What is the relationship between the concepts basis, spanning set, and linearly in-
dependent set?

2. Suppose S1 is a linearly independent set of a vector space V and S2 is a spanning
set. What is a necessary relationship between the sizes of the sets S1 and S2?

3. Define dimension. What is the dimension of the spaces Rn for positive integers n?
Give two different bases of R3. If the dimension of a vector space V is n, then is
every set of n vectors from V a basis?

4. (⋆) Consider the subspace W = {(x− y, y − z, z − x) : x, y, z ∈ R} of R3. Find two
elements of W that are not scalar multiples of each other, and also find an element
of R3 that is not in W . Explain why this is enough to conclude that dimW = 2.

5. What does it mean to “extend” a basis for a subspace to a basis for an entire vector
space?

6. Define codimension. If W has dimension 3 and is a subspace of a vector space V
with dimension 5, what is the codimension of W ? Give an example of an infinite-
dimensional vector space and a subspace with finite codimension.

1.8.1 Core definitions: basis and dimension

We’ll start out with two definitions.

Definition. A basis of a vector space V (which could be a subspace of a larger space) is a
linearly independent spanning set of V . The dimension of V , denoted dimV , is the size of a
basis of V .

This definition should probably get your hackles up: how can we define the dimen-
sion of a space as the size of a basis of V when we don’t know if bases all have the same
size—or, in fact, if bases even exist for every space? We’ll get to these points soon.

First, though, a word on the practical utility of bases: if {v1, . . . ,vn} is a basis of V ,
then every element of V can be written in the form c1v1+ · · ·+ cnvn in exactly one way:
there’s a one-to-one correspondence between elements of V and lists of coefficients
c1, . . . , cn. So identifying elements of an arbitrary vector space with their coefficients
in some basis can make doing calculations with them, not to mention proving many
results, a lot easier.

There are two key results about bases that we need to make our definition of “di-
mension” above valid:

1. Every vector space has a basis; and

2. Every basis of any given vector space has the same (possibly infinite) number of
vectors, called the dimension of the vector space.
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The proof of the first result, that every vector space has a basis, requires some unin-
tuitive technical set theory, so I’ll ask you to take it on faith. The second result follows
(at least when the dimension is finite) from a result called the Steinitz exchange lemma.
The details aren’t crucial, but they’re a good illustration of how to apply the theory
that we’ve developed so far. This and future optional passages will be set in smaller
text.
Lemma (Steinitz exchange lemma). Suppose I = {i1, . . . , im} is a linearly independent set of m vectors in
some space V , and S = {s1, . . . , sn} is a set that spans V . Then m ≤ n, and you can make I into a set that spans
V by adding some subset of n−m vectors from S.

Proof. S spans V , so we can write i1 as a linear combination from S:

i1 = c1s1 + · · ·+ cnsn.

This linear combination must be nontrivial, because I is linearly independent and so i1 ̸= 0. So at least
one of the scalars c1, . . . , cn is nonzero. Suppose that c1 ̸= 0 (if not, we can just renumber the elements
of S, designating a different element s1). On page 33, we showed that a linear combination of elements
of S can replace any element with a nonzero coefficient in that linear combination and leave the span of
S unchanged. So S has the same span as S1 := {i1, s2, s3, . . . , sn}, the set formed by replacing s1 with i1.
That is, S1 is a spanning set of V .

Now write i2 as a linear combination of the elements of S1:

i2 = c1i1 + c2s2 + c3s3 + · · ·+ cnin

(the coefficients cn in this equation are different from the ones in the equation for i1). I is linearly
independent, so none of its elements can be written as a linear combination of the others. In particular,
i2 can’t be a scalar multiple of i1. So at least one of the coefficients c2, . . . , cn on the elements of S
must be nonzero. Suppose c2 ̸= 0 (again, we can renumber the elements of S if we have to). Then,
again by our result from page 33, we can swap i2 in and s2 out without altering the span, getting a set
S2 := {i1, i2, s3, s4, . . . , sn} that also spans V .

Similarly, i3 can be written as a linear combination from S2:

i3 = c1i1 + c2i2 + c3s3 + c4s4 . . .+ cnsn

and the linear independence of I means that i3 can’t be a linear combination of just i1 and i2, so at least
one of the coefficients c3, . . . , cn must be nonzero. If c3 is nonzero (renumbering S if necessary), then
S3 := {i1, i2, i3, s4, s5, . . . , sn} is a spanning set of V .

If we repeat this process, we get spanning sets Sj that contain j elements of I and n− j elements of
S. We’ll be forced to stop in one of two ways: either we make it to set Sm, containing all elements of I
and possibly some leftover elements of S (that is m ≤ n); or we run out of elements of S first (that is,
m > n) and stop at Sn, a proper subset of I that also spans V . But the second way is actually impossible,
because if Sn = {i1, . . . , in} spans V , then we can write any of the leftover elements in+1, . . . , im of I as a
linear combination of i1, . . . , in, contradicting the linear independence of I . So m ≤ n, and Sm contains
I along with n−m elements of S.

The Steinitz exchange lemma shows that the largest linearly independent subsets
of a vector space are at most the size of the smallest spanning sets. So all sets that are
both linearly independent and spanning—that is, bases—must be the same size.

We can go a step further. Suppose a vector space V has finite dimension n. Then:

1. Any linearly independent set I with n elements must also span V . If I didn’t
span V , then we could add any vector outside span I to I and get a linearly inde-
pendent set of n+ 1 vectors, but this is impossible.

2. Any spanning set S with n elements must also be linearly independent. If S
wasn’t linearly independent, then we could eliminate some element of spanS
that was included in the span of the other other elements and get a spanning set
of n− 1 vectors. This is also impossible.
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So to sum up:

1. Every vector space has a basis.

2. All bases for a vector space have the same size, called the dimension.

3. The largest linearly independent sets, and the smallest spanning sets, both have
size equal to the dimension.

4. A set whose size equals the dimension cannot be a spanning set but not linearly
independent, or vice versa: it must be either both or neither.

Finally, the trivial subspace {0} is considered to have dimension zero and the empty
set ∅ as a basis.

1.8.2 Bases for Fn; conversion between bases

Most of our examples of vector spaces have had the form Fn—that is, fixed-length lists
of elements of a field such as R or C. The dimension of Fn is n, because one basis for it
is the n-element standard basis containing n vectors with one component equal to 1 and
the other components all 0. The standard basis vector with 1 in component number i
is commonly notated ei. For example, F3 has the standard basis {e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1)}. Any vector (x, y, z) ∈ F3 can be written as a linear combination
xe1 + ye2 + ze3.

But Fn has other bases as well. For example, {e1 = (1, 0), e2 = (0, 1)} is one basis
for R2, but so is {u1 = (1, 2),u2 = (−2,−2)}. (It’s easy to check that u1 and u2 are not
scalar multiples of each other, and any linearly independent two-element subset of R2

must be a basis.)
You can convert vectors between these two bases. Conversion from {u1,u2} to the

standard basis is straightforward: au1 + bu2 = (a− 2b)e1 + (2a− 2b)e2. Converting in
the other direction requires us to write e1 and e2 as linear combinations of u1 and u2.
We do this by solving linear systems with one equation for each component of e1 or e2.

Specifically, suppose e1 = au1+bu2. The expression au1+bu2 is a(1, 2)+b(−2,−2) =
(a− 2b, 2a− 2b). If this vector is e1, then the scalars a, b satisfy the system

a− 2b = 1

2a− 2b = 0

which you can solve to get (a, b) = (−1,−1), so e1 = −u1 − u2. Similarly, if e2 =
cu1 + du2, then c and d satisfy

c− 2d = 0

2c− 2d = 1

which you can solve to get (c, d) = (1, 1
2
), so e2 = u1+

1
2
u2. This diagram may help you

visualize what’s going on:
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u1

1
2
u2

u2

−u2

−u1

e1 = −u1 − u2

e2 = u1 +
1
2
u2

So conversion from the standard basis to the basis {u1,u2} uses the formula xe1 +
ye2 = x(−u1 − u2) + y(u1 +

1
2
u2) = (−x + y)u1 + (−x + 1

2
y)u2. Later on, we’ll learn

a standard technique for finding conversion formulas from the standard basis of Fn to
nonstandard bases. The theory of basis changes is crucial because linear maps with
complicated formulas in one basis often have much simpler forms in another basis.

One final note: the vectors e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), and so on form
a basis for F∞, the set of infinite sequences within only a finite number of nonzero terms—for instance,
the sequence (−2, 1, 0, 5, 0, 0, 0, . . . , 0, . . .) is −2e1 + e2 + 5e4. (This space is often useful as a source of
counterexamples for statements about finite-dimensional spaces that don’t apply to infinite-dimensional
spaces, so we’ll see it a few more times.) But {e1, e2, . . .} is not a basis for FN, the set of sequences with a
possibly infinite number of nonzero terms. For instance, the constant sequence (1, 1, 1, . . .) would have
to be written in terms of the standard basis vectors for F∞ as e1+e2+e3+e4+ · · · , but in generic vector
spaces, there is no notion of infinite sums.

1.8.3 Equivalence of finite-dimensional vector spaces and Fn

The existence of bases lets us translate arithmetic in any finite-dimensional vector space
into arithmetic in Fn. Suppose, for example, that V is a three-dimensional space with
a basis {u1,u2,u3}. Any vector v ∈ V can therefore be written as v = au1 + bu2 + cu3.
Let’s represent this vector with the element (a, b, c) of F3. Then:

1. Addition of elements of V can be modeled by adding their representations in F3.
That is, if v := au1 + bu2 + cu3 and w := xu1 + yu2 + zu3 correspond to (a, b, c)
and (x, y, z) respectively, then their sum v+w = (a+ x)u1 + (b+ y)u2 + (c+ z)u3

corresponds to (a+ x, b+ y, c+ z).

2. Taking scalar multiples of any element of V corresponds to scaling multiples of
its representation in F3. If v := au1 + bu2 + cu3 corresponds to (a, b, c), then
kv = kau1 + kbu2 + kcu3 corresponds to (ka, kb, kc).

The same idea works for dimensions besides 3: any n-dimensional vector space V
over a field F has the same structure as Fn. Depending on your choice of basis for
V , you could make any vector in V correspond to any vector in Fn (except that zero
vectors always have to correspond to each other). But as long as you keep your choice
of basis consistent, you can model all vector space operations on V in Fn, so any results
on Fn will generalize to all vector spaces.

Note that for translating from V to Fn, the order of basis vectors matters. If you
choose {u3,u1,u2} as a basis, then the element of F3 corresponding to au1 + bu2 + cu3
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is (c, a, b) rather than (a, b, c). (This means that using the curly set brackets to denote
bases is a slight abuse of notation, because the elements of a set don’t have an order,
but it’s common and shouldn’t be too confusing.)

1.8.4 Bases of subspaces; codimension

Suppose V is a vector space and W is a nontrivial subspace of V . It’s always possible to
find a basis A of V such that some subset of W is a basis for W . In fact, even if you start
with a specific basis B for W , you can extend this to some other basis A that includes B
as a subset.

The proof of this in the general case involves technical set theory, but in the finite-
dimensional case, it’s straightforward. Suppose V has dimension m and W has dimen-
sion n (where, of course, m ≥ n). The process for extending some basis B of W to a
basis for A is simple:

1. Take an arbitrary vector in V that is not in spanB, and add it to B.

2. Repeat step 1 until spanB = V .

This process keeps B linearly independent at each step, and it is guaranteed to
finish after adding m − n vectors to B. Once B contains m vectors, its span must be
all of B; otherwise, we could add some element in V but outside spanB and get a
linearly independent set of m+1 elements in an m-dimensional vector space, but such
a set can’t exist. One corollary (which should be intuitive) is that the dimension of a
subspace can’t exceed the dimension of the larger space.

This idea also gives us an important new term:

Definition. If W is a subspace of V , then the codimension of W is the number of vectors that
we have to add to a basis of W to get a basis of V .

When V is finite-dimensional, of course, codimW = dimV − dimW . But when W
and V are both infinite-dimensional, codimW can stil be finite.

As an example of an infinite-dimensional vector space and subspace with finite
codimension, consider the space F∞ of infinite sequences with a finite number of nonzero
terms: an element of F has the form (a1, a2, a3, . . .), where for each element there’s some
index N such that an ̸= 0 for every n ≥ N . The nF∞ has a basis made up of the stan-
dard basis vectors e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), and so
forth. Now consider the subspace W ⊂ F∞ of all such sequences whose first entry is
zero: that is, sequences of the form (0, a2, a3, . . .), where there’s some integer N such
that an = 0 for all n ≥ N . Then W has basis {e2, e3, e4, . . .}, and adding e1 makes this
into a vector space basis for all of F∞. So codimW = 1.

One final remark that should go without saying: the codimension of a vector space
depends on which larger vector space it’s being considered a subset of. For instance,
if you have three nested vector spaces U ⊂ V ⊂ W , then the codimension of U with
respect to V is not equal to the codimension of U with respect to W . Usually, though,
the larger space relative to which codimensions are defined should be clear.

(You may also be wondering whether the codimension, like the dimension, is nec-
essarily unique. Rest assured that it is. We won’t present a proof here, but later, we’ll
see that the codimension of a subspace W with respect to a larger space V is also the
dimension of another vector space notated V/W and called the quotient space, which
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we’ll define in section 1.12. As the dimension of V/W , like the dimension of any vector
space, is uniquely defined, so is the codimension of W .)

Answers to key questions.

1. A basis of a vector space is a set that is both lineraly independent and a spanning
set of the entire vector vector space.

2. |S1| ≤ |S2|.

3. The dimension of a space is the size of any basis for it. The dimension of Rn is n.

Any set of three linearly independent elements of R3 must be a basis. Two pos-
sible bases are {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and {(2, 0, 0), (4, 5, 0), (0, 0,−10)} (there
are many other possibilities).

A set of n vectors from an n-dimensional vector space is a basis of and only if it
is linearly independent, so it is not always a basis.

4. (1,−1, 0) (from setting x = 1, y = 0, z = 1) and (1, 0,−1) (from setting x = 1, 0, z =
0) are two elements of W that are not scalar multiples of each other (that is, they
form a linearly independent set). So W must have dimension at least 2. Mean-
while, (1, 0, 0) is not in W (to see this, note that the components of any element
of W must have sum zero). So W can’t be all of R3, which means it can’t have
dimension 3. And of course, a subspace of a three-dimensional vector space can’t
have dimension 4 or more. So W must have dimension 2.

5. The codimension of a vector subspace is the number of elements we’d need to
add to a basis for the subspace to form a basis for the entire space. The codimen-
sion of a three-dimensional subspace of a five-dimensional space is 5− 3 = 2.

One example of an infinite-dimensional vector space is RN, the set of infinite-
dimensional sequences of real numbers. One subspace of this (call it W ) is the set
of infinite-dimensional sequences with a zero in the first element. Any element of
RN can be written uniquely as the sum of an element of W plus a multiple of the
sequence (1, 0, 0, 0, . . .), so adding (1, 0, 0, 0, . . .) to a basis of W produces a basis
of RN, so W has codimension 1.

1.9 Dimensions of subspace intersections and sums

Key questions.

1. What is the subspace intersection lemma?

2. (⋆) Use the subspace intersection lemma to prove that for two subspaces V,W of
a larger space U , dim(V +W ) ≤ dimV + dimW and codim(V ∩W ) ≤ codimV +
codimW . (You can assume that U is finite-dimensional.) Give an example of vec-
tor spaces U, V,W for which which equality holds in both of these relationships
simultaneously (that is, dim(V + W ) = dimV + dimW and codim(V ∩ W ) =
codimV + codimW ).
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In section 1.6, we learned that the intersection of any two subspaces is also a sub-
space. This is not usually true for unions, because the sum of elements from two dif-
ferent subspaces does not have to be contained in either subspace. But the sum of two
subspaces—the set of all sums of an element from one subspace and an element from
another—is analogous, in certain contexts, to the union of sets. In particular, a key
formula that relates the sizes of intersections and unions of sets has a closely corre-
sponding formula that relates the dimensions of intersections and sums of subspaces.

1.9.1 Symmetry of intersection and sum; analogy between sum and
set union

Let’s make this analogy more precise. The intersection S ∩ T of two generic sets S and
T is the largest subset of both S and T—“largest” in the sense that if X ⊆ S and X ⊆ T ,
then X ⊆ S ∩ T . Similarly, the union S and T is the smallest superset of both S and T :
if S ⊆ X and T ⊆ X , then S ∪ T ⊆ X .

Similarly, the intersection W1∩W2 of two subspaces of a vector space V is the largest
subspace contained in both W1 and W2: if X is a subspace of W1 and W2, then X ⊆
W1 ∩W2. Symmetrically, W1 +W2 is the smallest subspace that contains both W1 and
W2: if X is a subspace that also contains both W1 and W2, then W1 ⊂ W2.

1.9.2 Subspace intersection lemma

One basic result from elementary set theory, called the inclusion–exclusion principle, re-
lates the size of the intersection and union of any two sets to the size of the sets them-
selves: if S and T are any sets, then |S ∪ T | = |S| + |T | − |S ∩ T |. (Remember that |S|
means the number of elements in S.) It should be easy to convince yourself that this
is true: if you calculate |S ∪ T | by counting the elements in S and in T separately and
adding the results, then any element of S ∩ T is double-counted, and you can correct
for this double counting by subtracting |S ∩ T |.

There is an analogous result for subspaces: if V and W are two finite-dimensional
subspaces of a larger space, then dim(V + W ) = dimV + dimW − dim(V ∩ W )—
the dimensions of any two subspaces add up to the sum of the dimensions of their
intersection and sum. The proof of this result simply follows from inclusion–exclusion
for ordinary sets and the following two results.

Proposition. Suppose that S and T are two linearly independent sets that do not have vectors
in common. Then S ∪ T is linearly independent if and only if spanS ∩ spanT = {0}.

Proof. Suppose S ∪ T is not linearly independent: that is, there is some nontrivial combination a1s1 +
· · · + amsm + b1t1 + · · · + bntn0 with s1, . . . , sm ∈ S and t1, . . . , tn ∈ S. Then a1s1 + · · · + amsm,
which is an element of spanS, equals −b1t1 − · · · − bntn, which is an element of spanT . These linear
combinations can’t equal 0 (because this would contradict the linear independence of either S or T ), so
there’s a nonzero element of spanS ∩ spanT .

Conversely, if spanS ∩ spanT contains a nonzero element, then writing this element as a linear
combination of S and as a linear combination of T , and then subtracting one linear combination from
the other, gives a linear combination of S ∪ T that equals zero. This linear combination is necessarily
nontrivial: since S and T don’t share vectors, subtracting the T combination from the S combination
can’t cancel out coefficients on the same vector.

Remark. We need the stipulation that S and T not have vectors in common to avoid
counterexamples such as if S and T are the same nonempty, linearly independent set:
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in this case, spanS ∩ spanT = spanS = spanT ̸= {0} but S ∪T is linearly independent.
We can drop this stipulation if we interpret S, T , and S ∪ T not as sets but rather as
multisets—that is, sets that can have duplicate elements (and taking the union of two
sets with common elements means that the resulting set has duplicates), such that any
multiset that contains a duplicate element is not linearly independent.

In general, when we talk about bases and linearly independent sets, we will typi-
cally actually mean multisets, even though we use set notation. For instance, if v1 =
v2 = (1, 0) ∈ R2 and v3 = (0, 1) ∈ R2, then if we interpreted set notation pedantically,
we would be forced to say that {v1,v2,v3} is a linearly independent set with only two
elements: v1 and v2 are two ways to write the same elements, and sets by definition
can’t contain duplicates, so {v1,v2,v3} is just a redundant way of writing {(1, 0), (0, 1)}.
But in practice, when we’re judging the linear independence of a set, we’ll interpret
notation such as {v1,v2,v3} as a multiset, not a set (thus, in this case, {v1,v2,v3} is a
linearly dependent multiset with three elements). This convention will help us avoid
littering theorem statements with special cases for when multiple elements in a con-
structed set might turn out to be the same, and shouldn’t be too confusing.

Lemma. Let V and W be two (possibly infinite-dimensional) subspaces of some larger space
U . Then there exist bases of V and W whose intersection is a basis of V ∩W and whose union
is a basis of V +W .

Proof. Let A be a basis of V ∩W . Extend A to bases of V and W by choosing sets B ⊂ V and C ⊂ W , both
disjoint from A, such that A ∪B is a basis of V and A ∪C is a basis of W . (Remember our discussion on
page 47.) We’re guaranteed that B and C are disjoint however we choose them, becaues any vector that
they shared would also be in V ∩W = spanA, making A∪B and A∪C no longer linearly independent.

Let’s prove that A∪B∪C is a basis of V +W . We already know that A∪B∪C spans V +W (because
spanS1 + spanS2 = span(S1 ∪ S2)), so we just have to prove that it’s linearly independent. To show this
(by the propsition we just established), it’s enough to show that V = span(A∪B) shares no vectors with
spanC besides 0.

Suppose that there’s some nonzero vector w ∈ spanC that’s also in span(A ∪ B) = V . Then since
spanC ⊆ W , so w ∈ V ∩ W = spanA. So spanA and spanC have a nonzero common vector w, so
A ∪ C is not linearly independent. But A ∪ C was defined to be a basis for W , so it must be linearly
independent, a contradiction. Thus, no nonzero vector w ∈ span(A∪B)∩ spanC can exist, so A∪B ∪C
is linearly independent.

Thus, we have bases A ∪ B for U and A ∪ C for W , whose intersection A is a basis of V ∩ W and
whose union A ∪B ∪ C is a basis of V +W .

With our preliminary results in hand, we can finally prove:

Lemma (subspace intersection lemma). If V and W are two subspaces of a common larger
space, then dim(V +W ) = dimV + dimW − dim(V ∩W ).

Proof. Let B1 and B2 be bases for V and W such that B1 ∩B2 and B1 ∪B2 are bases for
V ∩W and V +W , we have

dim(V +W ) = |B1 ∪B2|
= |B1|+ |B2| − |B1 ∩B2| (inclusion–exclusion for sets)
= dimV + dimW − dim(V ∩W ).
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Intuitively, you can interpret the subspace intersection lemma like this: when we
compute the sum V +W , we’re taking V and adding to it all the dimensions of W that
are missing from V . That is, we’re adding all the dimensions of W minus the ones that
it already shares with V —that is, dimW − dim(V ∩W ).

Though the inclusion–exclusion principle has a generalization to three or more sets, the subspace
intersection lemma does not. For instance, for ordinary sets,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

But in general, for vector subspaces,

dim(U + V +W ) ̸=dimU + dimV + dimW − dim(U ∩ V )− dim(U ∩W )

− dim(V ∩W ) + dim(U ∩ V ∩W ).

For instance, consider the case where U, V,W are three distinct one-dimensional subspaces of R2—say,
U = span{e1}, V = span{e2}, and W = span e1 + e2. Then dim(U + V + W ) = dim(R2) = 2, but the
intersection of two or more of U, V,W is {0} and has dimension 0, so the right-hand formula is 3.

1.9.3 Subspace intersection lemma for codimensions

Some slight algebraic manipulation of the subspace intersection lemma dimV+dimW =
dim(V ∩W )+dim(V +W ) gives the consequence (dimU −dimV )+(dimU −dimW ) =
(dimU − dim(V ∩W )) + (dimU − dim(V +W )) for any space U that includes both V
and W ; that is, codimV +codimW = codim(V ∩W ) + codim(V +W ). This turns out to
be the same formula as before, only with codim replacing dim.

1.9.4 Possible ranges of subspace dimensions

The subspace intersection lemma dimV + dimW = dim(V ∩ W ) + dim(V + W ) (and
the equivalent statement for codimensions) means that if we know the dimensions of
three of the spaces V , W , V ∩W , and V +W , we can find the dimension of the fourth. If
we only know the dimensions of two of these spaces, we can still find possible ranges
for the dimensions of the other spaces, using these facts:

1. dim(V ∩W ) is at least zero and most the smaller of dimV and dimW , so dim(V +
W ) is at most dimV + dimW and at least the larger of dimV and dimW .

2. dim(V + W ) can’t exceed the dimension of any larger space U that contains V
and W , so dim(V ∩ W ) ≥ dimV + dimW − dimU . We can rewrite this with
codimensions as codim(V ∩W ) ≤ codimV + codimW ; remember that codimX =
dimU − dimX if X is a subspace of U .

A few examples:

1. If dimV = 6, dimW = 4, and dim(V + W ) = 9, then what is the dimension of
V ∩W ? In this case, using the subspace intersection lemma gives an immediate
answer: dim(V ∩W ) = dimV + dimW − dim(V +W ) = 1.

2. If dimV = 4, dim(V ∩W ) = 3, and dim(V +W ) = 7, then what is dimW ? Again,
the subspace intersection lemma gives an answer: dimW = dim(V ∩W )+dim(V +
W )− dimV = 6.
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3. Suppose dimV = 5 and dimW = 3. Furthermore, V and W are both sub-
spaces of some space U , and dimU = 7. Then dim(V + W ) can range from
max(dimV, dimW ) at the low end to min(dimV + dimW, dimU) at the high end.
In this case, dimU = 7 < dimV + dimW = 8, so dim(V +W ) can equal 5, 6, or 7.
The corresponding possible values of dim(V ∩W ) are 3, 2, and 1.

4. Suppose dimV = 5, dim(V ∩ W ) = 2, and the enclosing space U has dimension
9. What are the possible dimensions of dimW ? We know that dim(V +W ) has to
be at least dimV = 5 and at most dimU = 9. As dimW = dim(V ∩W ) + dim(V +
W )− dimV = dim(V +W )− 3, so V +W can have any integer dimension from 5
through 9, and dimW can correspondingly have any dimension from 2 through
6.

Most problems you’ll see in practice will give you dimV and dimW , so you can use
this pair of nicely symmetrical results, where U is any space that includes both V and
W :

1. dim(V +W ) is at least max(dimV, dimW ) and at most min(dimU, dimV +dimW )

2. codim(V ∩W ) is at least max(codimV, codimW ) and at most min(codimU, codimV+
codimW ).

Answers to key questions.

1. The subspace intersection lemma states that for any two subspaces V,W of a
larger space U , dim(V +W ) + dim(V ∩W ) = dimV + dimW .

2. The result dim(V +W ) ≤ dimV +dimW follows immediately from the subspace
intersection lemma dim(V +W ) = dimV +dimW −dim(V ∩W ) and the fact that
dim(V ∩W ) ≥ 0.

From the alternate formulation codim(V ∩W ) = codimV +codimW − codim(V +
W ) and the trivial fact codim(V + W ) ≥ 0, we get the reuslt codim(V ∩ W ) =
codimV + codimW .

An example for which dim(V + W ) = dimV + dimW and codim(V ∩ W ) =
codimV + codimW has to be one in which dim(V ∩ W ) = codim(V + W ) = 0;
that is, V ∩ W = {0} and V + W = U . You can create any number of examples
by taking a basis of some arbitrary vector space U , letting V be the span of some
subset of this basis, and letting W be the span of the remaining basis; for instance,
U = R4, V = span{e1, e2},W = span{e3, e4}.

1.10 Direct sums

Key questions

1. What does it mean for a sum of two subspaces to be direct? Give three equivalent
criteria: one involving the number of ways to write a vector in the subspace sum
as a sum of one vector from each subspace, one involving dimensions of the
subspace sum, and one involving dimensions of the subspace intersection.
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2. Which of the criteria in question 1 can you generalize to give a definition of a
direct sum of three or more subspaces?

3. Define the subspaces W1 = span{(1, 0, 0)}, W2 = span{(1, 0, 0), (1, 1, 0)}, W3 =
span{(0, 0, 1)}, and W4 = span{(0, 2, 1), (0, 1, 1)}. Is W1 + W2 a direct sum? Is
W1 +W3? Is W1 +W4? Is W2 +W4?

In section 1.6.2, we defined the sum of subspaces. If V1, . . . , Vn are multiple sub-
spaces of some larger vector space, then V1 + . . . + Vn is the smallest subspace that
includes all of V1, . . . , Vn as subspaces, or (equivalently) the set of all sums of one el-
ement out of each of the spaces Vn. Then in section 1.9, we noted that the sum of
two spaces V1 + V2 had dimension at most dimV1 + dimV2—and that this maximum
dimension was only possible if V1 and V2 had no vectors in common besides 0.

In this section, we’ll look at other properties of pairs of subspaces V1, V2 whose
sum has this maximum possible dimension dimV1 + dimV2, and that have the max-
imum possible dimension given the dimensions of the individual subspaces. Essen-
tially, these sums have no “redundant” dimensions: every subspace expands the sum
by as much as its dimension allows. These sums are called direct sums, and they have
the additional important property that every element in the sum can be written in only
one way as the sum of one vector from each of the constituent subspaces. In fact, as
we’ll see, these two characterizations are logically equivalent.

We’ll put a definition up front. This definition may seem unintuitive for now; the
rest of the chapter will be devoted to explaining its usefulness.

1.10.1 Direct sums of two spaces

Let’s start with an illustrative example. We’ll define three subspaces U, V,W of R3:

• U := span{e1, e2} is the set of vectors of the form (x, y, 0) (that is, the xy-plane).

• V := span{e2 + e3} is the set of vectors of the form (0, y, y) (that is, the line x =
0, y = z.)

• W := span{e2, e3} is the set of vectors of the form (0, y, z) (that is, the yz-plane).

The subspace sums U + V and U +W both equal R3. Any vector (x, y, z) ∈ R3 can
be decomposed into a sum of an element of U and an element of V , in exactly one way:
(x, y−z, 0)+(0, z, z). But the same vector can be decomposed into many different sums
of an element of U and an element of W : (x, y, 0) + (0, 0, z) and (x, 0, 0) + (0, y, z) and
(x, 3

2
y, 0) + (0,−1

2
y, z) are two of an infinite number of possibilities.

Also note these different properties of U + V and U +W :

1. dim(U + V ) equals dimU + dimV , but dim(U +W ) is less than dimU + dimW .

2. U and V intersect only at {0}, but the intersection of U and W is a nonzero sub-
space of R3, namely span{e2}.

3. Elements of U + V can be decomposed as u+ v for some u ∈ U,v ∈ V in an only
one way. By contrast, elements of U +W can be similarly decomposed into u+w
in an infinite number of ways.
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Mathematicians invented the term direct sum to describe these differences: the sum
U + V is direct, but U +W isn’t. Direct sums can be notated with a special symbol ⊕:
thus we can write R3 = U ⊕ V .

Specifically, a sum U+V of two subspaces is called direct, and can be notated U⊕V ,
if any of these logically equivalent conditions holds:

1. dim(U + V ) = dimU + dimV .

2. U ∩ V = {0}.

3. For any vector w ∈ U +V , there is only one ordered pair of elements (u,v) where
u ∈ U and v ∈ V such that w = u+ v.

4. The only vectors u ∈ U,v ∈ V for which u+ v = 0 are u = v = 0.

5. There exists a vector w ∈ U + V that can be written in only one way as u + v for
u ∈ U,v ∈ V .

Proposition. These conditions are logically equivalent.

Proof. We’ll prove the implications 1 ⇐⇒ 2, 2 ⇐⇒ 5, and 3 =⇒ 4 =⇒ 5 =⇒ 3. Some portions of this
argument may remind you of the proof of equivalence of the multiple notions of linear independence in
section 1.7.2.

• Equivalence of 1 and 2: the subspace intersection lemma. (Remember that dim{0} = 0.

• 5 implies 2: Suppose that there are some distinct vectors u1,u2 ∈ U and v1,v2 ∈ V such that
u1 + v1 = u2 + v2. Then u1 − u2 = v2 − v1 is a nonzero element of both U and V .

• 2 implies 5: Suppose that there’s some nonzero w ∈ U ∩V . Then (0,w) and (w,0) are two distinct
ordered pairs of elements from U and V that add up to w.

• 3 implies 4 and 4 implies 5: obvious. The progression from “for all” to “for 0” to “for any” is a
logical weakening at each step. (This argument may remind you of the proof of equivalence of
the multiple notions of linear independence in section 1.7.2.)

• 5 implies 3: We’ll prove that not-3 implies not-5. Suppose we have two ways w′ = u1+v1 = u2+v2

of writing some particular element w′ as a sum of an element of U and an element of V . Then
(u1 − u2) + (v1 − v2) = 0, so given any other element w = u + v ∈ U + V , we can also write
v = (u+ u1 − u2) + (v + v1 − v2).

As a final note, given a space V and a subspace W , it’s always possible to find
another subspace W ′ such that V = W ⊕ W ′. The prodcedure is simple: start with a
basis of W , extend it to a basis of V (remember section 1.8.4), and define W ′ to be the
span of these new vectors.

1.10.2 Direct sums of three or more spaces

The definition of direct sums generalizes naturally to three or more subspaces. We’ll
make this a definition:

Definition. Let V1, . . . , Vn be subspaces of the same space, with the property that the only
way to choose pairs of vectors v1,v

′
1 ∈ V1, . . . ,vn,v

′
n ∈ Vn from each subspace such that

v1 + v2 + · · · + vn = v′
1 + · · · + v′

n is by choosing v1 = v′
1, · · · ,vn = v′

n. Then the sum
V1 + · · ·+ Vn is a direct sum, and can be written with the special symbol V1 ⊕ · · · ⊕ Vn.
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Remark. This definition extends to the ability to define infinite subspace sums and direct
sums V1+V2+ · · · , with the caveat that if you choose one vector from every component
of an infinite subspace sum, then all but a finite number of the vectors that you choose
have to be 0, because there’s no notion of infinite sums of elements of general vector
spaces.

Put more intuitively: the sum V1+· · ·+Vn is direct if for every element v ∈ V1+· · ·+
Vn, there is only one choice of vectors v1 ∈ V1, · · · ,vn ∈ Vn such that v = v1 + · · ·+ vn.
For a sum of three or more spaces to be direct, it is necessary but not sufficient that
Vi ∩ Vj = {0} for any pair of indices 1 ≤ i, j ≤ n. (For a counterexample, consider the
subspaces V1 = span{e1}, V2 = span{e2} and V3 = span{e1 + e2} in R2—geometrically:
the x-axis, the y-axis, and the line y = x. Then V1 ∩V2 = V1 ∩V3 = V2 ∩V3 = {0} but the
sum V1 + V2 + V3 = R2 is not direct.)

Some of the alternate formulations, however, do hold (or can be adapted) to the
sum of an arbitrary finite number of subspaces. (With slight adaptation, we could
make them apply to sums of infinitely many subspaces, but again, we won’t need the
theory of infinite sums here.)

Proposition. The following conditions on the subspace sum V1 + · · ·+ Vn are equivalent:

1. V1 + · · · + Vn is direct as defined above: no element can be written in two ways as the
sum of one element from each space.

2. The only way to write 0 as the sum of one element from each of V1, . . . , Vn is to choose 0
from each space.

3. There exists an element of V1 + · · · + Vn that can only be written in one way as the sum
of one element from each space.

4. For any list of bases B1, . . . , Bn for V1, . . . , Vn, the union B1 ∪ · · · ∪ Bn is a basis of
V1+ · · ·+Vn. (The union of bases is taken to mean a multiset: i.e. if two of the Bi contain
the same vector, then the union contains two copies of the same vector and isn’t a basis.
In particular, this means that no possible choice of bases B1, . . . , Bn contains two bases
with a duplicate vector.)

5. There exists a list of bases B1, . . . , Bn of V1, . . . , Vn such that B1 ∪ · · · ∪Bn is a basis of
V1 + · · ·+ Vn.

Proof. First, remember that we remarked way back in section 1.6.3 that if S1 and S2 are
spanning sets of V1 and V2, then S1 ∪ S2 is a spanning set of V1 ∪ V2. The generalization
to three or more sets should be relatively obvious. So to prove that B1 ∪ · · · ∪ Bn is a
basis of V1 + · · ·+ Vn in statements 4 and 5, we only need to show that B1 ∪ · · · ∪ Bn is
linearly independent.

Now, on to proving the equivalence of each statement:

Equivalence of 1, 2, and 3: straightforward adaptations of the equivalent portion of the
proof for direct sums of two subspaces in the last subsection.

2 implies 4: Suppose that not-4: that is, there exists a collection of bases B1, . . . , Bn of
V1, . . . , Vn whose union is not linearly independent. Then if we take any nontrivial
linear combination from B1 ∪ · · · ∪ Bn with value 0, then we can divide it into a linear
combination of n “constituent” linear combinations: one constituent is the terms from
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B1 (call the total value of these terms v1), another is the linear terms from B2 (call
the total value of these terms v2), and so on. Since the complete linear combination
is nontrivial, at least one of its constituents is nontrivial, and since each Bi is linearly
independent, the value vi of any nontrivial constituent has to be nonzero. So 0 =
v1 + · · · + vn is a sum of one element from each Vi that includes at least one nonzero
term; that is, not-2.

4 implies 5: As every vector space has a basis, “for any” implies “there exists”.

5 implies 2. Let B1, . . . , Bn be arbitrary bases and suppose that not-2: that is, we can
write 0 = v1 + · · · + vn where vi ∈ Vi for all indices i and at least one of the vi is
not zero. Then decomposing each vi into a linear combination of Bi gives a nontrivial
linear combination from B1 ∪ · · · ∪ Bn that 0; that is, no such union of bases can be
linearly independent; that is, not-5.

As an immediate corollary, we finally have the initial intuition about the effects of
direct sums on subspace dimensions:

Corollary. dim(V1 ⊕ · · · ⊕ dimVn) = dimV1 + · · ·+ dimVn.

Proof. Taking direct sums of subspaces means taking unions of their bases, and taking
unions of sets without duplicate elements means adding their sizes.

Answers to key questions.

1. Criteria for a sum of two subspaces to be direct: (1) every vector in the sum can
be written as the sum of one vector from each subspace in exactly one way; (2)
the dimension of the sum is the sum of the dimensions of the subspaces; (3) the
dimension of the subspace intersection is zero.

2. Criteria (1) and (2) generalize in clear ways, but not criterion (3): it is possible
to have a set of three or more subspaces whose intersection is zero (indeed, such
that the intersection of every pair of subspaces is zero), but such that the other
criteria for a direct sum are not satisfied.. One counterexample is three or more
distinct one-dimensional subsets of R2.

3. W1 +W3 and W1 +W4 are direct, but W1 +W2 and W3 +W4 are not. The easiest
way to tell is to compute the dimensions of the subspace sums.

1.11 Affine spaces

Key questions.

1. If W is a subspace of V and A is a subset of W , what is the geometric intuition
behind saying that A is an affine space parallel to or coset of W ? Give four equivalent
algebraic definitions: two of the form “for any element a0 ∈ A, . . . ” and two of
the form “there exists an element a0 ∈ A such that . . . ”.

2. Explain why every subspace is a coset of itself.
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3. (⋆) Can two different cosets of the same subspace have vectors in common?

4. (⋆) Prove or give a counterexample: if W1 and W2 are two subspaces of a vector
space V , and W2 contains a coset of W1, then W1 ⊆ W2.

5. (⋆) Show that if A is an affine subspace of V , then {a1 − a2 : a1, a2 ∈ A} is a
subspace of V . Is the converse also true?

6. What is the formula for the sum of cosets of two different subspaces (defined
analogously to the sum of subspaces)?

7. Suppose A1, A2 are affine spaces of R10 with respective dimensions 6 and 7. What
are the possible dimensions of A1 +A2? Is it possible for A1 ∩A2 to be the empty
set? What are the possible dimensions of A1 ∩ A2 if it’s not the empty set?

When we defined subspaces, we noted that that every subspace always contains
0, and that in R2 and R3, we can interpret nontrivial subspaces geometrically as lines
and planes through the origin. You may wonder if there’s a similar concept for the
lines and planes that do not include the origin. In fact, there is: the concept of affine
subspaces. This section and the following one may seem tricky, but they will pay large
dividends, especially in math courses beyond linear algebra.

1.11.1 Examples and definition

Let’s start with an example: the set W ⊂ R2 of pairs (x, y) such that y = 2x. You can
check easily that W is a vector subspace of R2, and W is geometrically a line through
the origin of a two-dimensional Cartesian plane.

Now let A be the set of pairs (x, y) such that y = 2x + 1—that is, those of the form
(x, 2x+1). You can see easily that A is not a subspace of R2 (for instance, you can simply
note that 0 /∈ A, or that (1, 3) is in A but not its multiple (2, 6)). Geometrically, A and W
are parallel lines. In purely algebraic terms, A has two properties that relate it back to
W , and we’ll use these properties to produce a more general notion of “parallel” that
applies to vector spaces without simple geometric interpretations:

1. The difference between any two elements of A is an element of W : if a1 =
(x1, 2x1 + 1) and a2 = (x2, 2x2 + 1), then a1 − a2 = (x1 − x2, 2x1 − 2x2), which
is in W because its second component is double its first component.

2. Conversely, if you pick some fixed vector a ∈ A, then any vector in W plus a
is another vector in A. This is clearest if we choose a = (0, 1), because some
arbitrary vector (k, 2k) ∈ W plus (0, 1) is (k, 2k + 1), which matches the general
form for elements of A. But if we choose, say, a = (−1

2
, 0) instead, then (k, 2k) +

(−1
2
, 2k) = (k− 1

2
, 2k), which is also of the form (x, 2x+1) (just choose x = k− 1

2
).

Similarly, if we chose a = (1, 3), then (k + 1, 2k + 3) also has the form (x, 2x + 1)
(choose x = k + 1).

Affine spaces are essentially sets that are “parallel to” some subspace, where we
define “parallel” using the algebraic definition above.

Definition. Let V be a vector space, W be a subspace, and A be a nonempty subset of V .
A is an affine space parallel to W , or equivalently a coset of W , if any of these (logically
equivalent) conditions holds.
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1. For all vectors a0 ∈ A, the set {a− a0 : a ∈ A} equals W .

2. There exists at least one a0 ∈ V (necessarily also in A) such that {a−a0 : a ∈ A} = W .
(The reason that a0 must be in A is that otherwise, {a− a0 : a ∈ A} would not contain
0 ∈ W .)

3. A = W + a0 for all fixed vectors a0 ∈ A, the set {w + a0 : w ∈ W} of sums of a0 and
any vector in w equals A.

4. There exists at least one vector a0 ∈ V (again, necessarily in A—why?) such that
{w + a0 : w ∈ W} = A.

Note that according to this definition, W is also an affine space parallel to (that is,
it’s a coset of) itself.

It’s probably not immediately apparent why the four conditions in the definition
are equivalent. Let’s prove it.

Proposition. The conditions in the definition of coset are logically equivalent.

Proof. We’ll prove the logical equivalences 1 ↔ 2, 3 ↔ 4, and 2 ↔ 4.
Equivalence of 1 and 2. It’s trivial that condition 1 implies condition 2: the inference from “for all

a0 ∈ A” to “there exists a0 ∈ V ” is always true if A is a nonempty subset of V . To show that 2 implies 1,
suppose a0 ∈ A satisfies {a − a0 : a ∈ A} = W , and choose an arbitrary element b0 of A. (This means
b0 − a0, as the difference of two elements of A, is in W .) Write S := {a − b0 : a ∈ A}. To show that
condition 1 is true, we need to show that S = W . We can show this by proving inclusion two ways: that
S ⊆ W and W ⊆ S.

• Is S a subset of W? We know that b0 − a0 is in W , as is a − a0 for any a ∈ A. So their difference
(a− a0)− (b0 − a0) = a−b0, which is an element of S, must also be in W , because the difference
of any two elements of a vector subspace is also in the subspace.

• Is W a subset of S? If w is in W , then so is w′ := w + (b0 − a0). Condition 2 means that we can
choose some element a ∈ A such that w′ = a− a0. So w can be written as (a− a0)− (b0 − a0) =
a− b0. That is, we can write any element of W in the form of an element in S.

Equivalence of 3 and 4. Again, it’s trivial that 3 implies 4: “for any” on a nonempty set implies “there
exists.” To prove that 4 implies 3, suppose {w + a0 : w ∈ W} = A. Choose an arbitrary vector b0 ∈ A,
and choose w′ ∈ W such that w′ + a0 = b0. Define S = {w + b0 : w ∈ W}. To show that 3 is true,
we need to show S = A for every possible choice of b0. Again, to show that two sets are equal, we can
show that each is a subset of the other.

• Is S a subset of A? Evern element of S can be written as w + b0 where w is an element of W .
Remember that w′ ∈ W satisfies w′ + a0 = b0. Then (w +w′) + a0 = w + b0, so w + b0 is the
sum of a0 and an element of W , so it has to be in A.

• Is A a subset of S? Any element w + a0 ∈ A can be rewritten w +w′ + b0, which is the sum of b0

and an element w +w′ of W , so every vector in A is also in S.

2 implies 4. Let a0 be such that {a − a0 : a ∈ A} = W , and let S = {w + a0 : w ∈ W}. We want to
prove that A = S. Again, we prove:

• Is S a subset of A? Let w + a0 be an arbitrary element of S. w must equal a − a0 for some a ∈ A,
so w + a0 = a ∈ A. So S ⊆ A.

• Is A a subset of S? If a ∈ A, then a− a0 ∈ W , and thus (a− a0) + a0 = a ∈ S.

4 implies 2. Let a0 be such that {w + a0 : w ∈ W} = A, and let S = {a − a0 : a ∈ A}. We want to
prove that S = W .

• Is S a subset of W? If s := a − a0 is any element of S, then s + a0 = a is an element of A. Every
element a of A can be written a = w + a0 for some w ∈ W . So w + a0 = s + a0, so w = s and
s ∈ W .
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• Is W a subset of S? If w ∈ W , then a := w + a0 ∈ A, so a− a0 = w ∈ S.

Note: If A is an affine subspace, then the set {a1 − a2 : a1,a2 ∈ A} of differences between elements
of A is a vector subspace. But {a1 − a2 : a1,a2 ∈ A} can be a vector subspace even if A is just a subset
of an affine space but not an affine space itself. Consider, for instance, A = {(x, 1) : x ∈ R, x ≥ 0} ⊂ R2,
containing all points on the line y = 1 with a non-negative x-coordinate. Then {a1 − a2 : a1,a2 ∈ A} =

{(x, 0) : x ∈ R} = span{e1}, which is a subspace of R2, but A is not a coset of span{e1}.
If W is a subspace and A is a parallel affine space {w + a0 : w ∈ W}, then we can

denote A as a0 + W . Note again, finally, that the choice of base point a0 is arbitrary:
any point in A gives the same set. In particular, if a0 − b0 ∈ W , then a0 +W = b0 +W .
This point is key to making algebraic manipulations with affine subspaces.

One final proposition:

Proposition. Suppose A is an affine subspace of a vector space V , and W is the vector subspace
parallel to A. Then any vector subspace of V that contains A also contains W .

Proof. Every element of W can be written as the difference of two elements in A. The
difference of two elements of a vector subspace is also in that subspace, so any sub-
space that contains A must also contain the set of differences of elements of A; that is,
it must contain W .

1.11.2 Sums and intersections of affine spaces

Unlike regular subspaces, which all at least contain 0, affine subspaces don’t necessar-
ily have any elements in common. As one simple example, if b0 /∈ W +a0, then W +a0

and W + b0 have no vectors in common: two cosets of the same subspace either are
identical or don’t intersect at all.

As a less trivial example, consider the one-dimensional affine subspaces of R3 (that
is, lines) (0, 0, 1) + span{(1, 1, 1)} and (0, 2, 0) + span{(1, 0, 0)}. The first contains all
vectors of the form (a, a, a+ 1); the second contains all vectors of the form (b, 2, 0), and
no values of a and b can make these equal.

The sum of affine spaces can be defined by analogy to the sum of regular subspaces:
A+B = {a+b : a ∈ A,b ∈ B}. We can also define the dimension of an affine space as
the dimension of the parallel subspace.

The sums and intersections of affine spaces—as well as the conditions under which
the intersection of two affine subspaces exists—can be precisely characterized. This
proposition isn’t typically useful, but you may find it worth reading for completeness.

Proposition. Let V and W be two subspaces of a vector space U , and let A := a0 + V and B := b0 +W be two
parallel affine spaces. Then:

1. A+B = (a0 + b0) + (V +W ).

2. Define A − B := {a − b : a ∈ A,b ∈ B}, the set of differences of an element in A and an element of B.
Then either: (a) A − B = V +W and A ∩ B is a coset of V ∩W , or (b) (A − B) ∩ (V +W ) = ∅ and
A ∩B = ∅.

Proof.

1. By definition, A + B is the set of vectors of the form (a0 + v) + (b0 +w) for v ∈ V,w ∈ W , and
(a0 + b0) + (V +W ) is the set of vectors of the form (a0 + b0) + (v +w). These expressions are
the same sum, just parenthesized differently.
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2. The set of negatives of the elements in b0 +W is (−b0) +W (because the negative of b0 +w is
−b0 + (−w), and w ∈ W if and only if −w ∈ W as well). So by the formula that we established
in statement 1 of this proposition, A−B equals (a0 −b0)+ (V +W ); that is, it’s a coset of V +W ,
so it either equals V +W or doesn’t intersect it at all. Let’s look at each case separately, and note
that 0 ∈ A−B if and only if A and B have an element in common.

• Case a: A−B = V +W . In particular, since 0 ∈ V +W , so 0 ∈ A−B, so A ∩B contains at
least one element (call it c). The choice of base point for a coset is arbitrary, so we can write
A = c+V = {c+v : v ∈ V } and, similarly, B = {c+w : w ∈ W}. So the elements in A∩B
are the ones that we can write both as c+ v and as c+w. That is, A ∩B = c+ (V ∩W ).

• Case b: A−B and V +W are disjoint. Then 0 ∈ V +W (because V +W is a vector subspace),
so 0 /∈ A−B, so A and B are disjoint.

The result A+B = (a0+b0)+(V +W ) does not depend on the choice of base point.
If we chose to write A and B with different base points as A = a′

0+V and B = b′
0+W ,

where a′
0 − a0 ∈ V and b′

0 − b0 ∈ W , then (a′
0 + b′

0)− (a′
0 + b0) is an element of V +W ,

and a′
0 + b′

0 + V +W = a0 + b0 + V +W .

Answers to key questions.

1. Geometric intuition: A is an affine space parallel to W if it’s just a translated copy
of W .

A is an affine space parallel to W if for every element a0 ∈ A,

(a) The set of differences {a− a0 : a ∈ A} equals W .

(b) The set of sums {w + a0 : w ∈ W} equals W .

We can get equivalent characterizations by replacing “for every element a0 ∈ A”
with “there exists an element a0 ∈ A such that ...” and using the same statements
as in the list.

2. Using the definition that a coset of W is the set {w + a0 : w ∈ W} and choosing
a0 = 0 shows that W is a coset of itself.

3. Two different cosets can’t have vectors in common. If A,B are two cosets of W ,
then they can be written in the forms a0 + W and b0 + W where a0 and b0 are
arbitrary elements of A and B. So if A and B share an element, then we can choose
that element as both a0 and b0 and give identical expressions for a and B.

4. The statement is true. If A is a coset of W1 that is contained in W2, then since
W2 is closed under addition (and therefore subtraction), it must contain every
difference between two elements of A, and the set of these differences is W1.

5. If A is a coset of some subspace W , then {a1 − a2 : a1 ∈ A} must equal W for any
particular a2 ∈ A, so the union of all such sets—that is, {a1 − a2 : a1, a2 ∈ A} for
arbitrary a2—is also W .

For a counterexample to the converse statement: A = {(x, 1) : x > 0} is not a
subspace of R2, but {a1 − a2 : a1, a2 ∈ A} is a subpsace (namely span{e1}).



1.12. OPTIONAL: QUOTIENT SPACES 61

6. If A1 = a1+W1 and A2 = a2+W2, then A1+A2 = (a1+a2)+(W1+W2). So A1+A2

could have any of the possible dimensions of W1 and W2: that is, any integer
between max(dimW1, dimW2) = 7 and min(dimR10, dimW1 + dimW2 = 10.

A1∩A2 is either empty or a coset of W1∩W2. The possible codimensions of W1+W2

range from max(codimW1, codimW2) = 4 to min(dimR10, codimW+ codimW2) =
7, so the possible dimensions range from 3 to 6.

1.12 Optional: Quotient spaces

Key questions.

1. What is a relation on a set? What properties must a relation satisfy to be an equiv-
alence relation? What is the relationship between equivalence relations and equiv-
alence classes?

2. (⋆) Define the two relations a ∼1 b and a ∼2 b on the set of integers Z as a ∼1 b
if a ≥ b and a ∼2 b if |a − b| is a power of 2. (Define power of 2 to be any integer
that equals 2n for some integer n ≥ 0.) Which equivalence relation axioms does
∼1 satisfy? What about ∼2?

3. What is a quotient construction? What’s the most common kind of equivalence
relation used in quotient constructions? What method do you use to extend op-
erations on elements of the original set to elements of the quotient?

4. Why can you extend multiplication on Z to elements of Z/5Z using representative
elements, but you can’t extend multiplication on R to elements of R/Z?

5. (⋆) Consider the equivalence relation on R defined as x ∼ y if x and y are both
positive, both negative, or both zero. Can you define addition on the set of equiv-
alence classes using addition in R and the representative element construction?
What about multiplication?

6. If V is a vector space with dimension 24 and W is a subspace of V with dimension
8, what is the dimension of V/W ?

Quotient spaces are vector spaces whose elements are entire cosets of a larger vec-
tor space. To be more precise, if V is a vector space and W is a subspace of V , then the
quotient space V/W is the set of cosets of W . Addition and multiplication on V/W are
defined by using the corresponding operations on V and a technique called representa-
tive element construction, which shows up in analogous situations in many branches of
algebra. It’s worth discussing representative elements first as a way to construct a for-
malism for a slightly more familiar concept: modular arithmetic on ordinary integers.

1.12.1 Equivalence relations and modular arithmetic

Quotient spaces are analogous to modular arithmetic, which is arithmetic on integers
that ignores all information about them except their remainders relative to some fixed
divisor. The idea of modular arithmetic is often introduced by an analogy with clock-
faces. For instance, on a 24-hour clock numbered from 0 to 23, you could say that
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9 + 6 = 15 (because starting on the 9 and moving clockwise 6 places puts you at 15),
but 20 + 6 = 2 (because starting on 20 and moving right four places puts you back at
0, and then two places left bring you to 2). You could notate this less confusingly by
explicitly noting the modulus and using the congruence sign ≡ instead of the equals
sign, as 20 + 6 ≡ 2 mod 24.

The key fact about modular arithmetic is that if two integers have the same remain-
der when divided by some “modulus” m (we can call this the remainder or “residue”
“modulo m), then so do their sums or products with any other integer. That is, if a
and a′ have the same residue modulo m, then so do a + b and a′ + b, or ab and a′b,
regardless of what b is. Why is this? Remember that x and y leave the same remain-
der modulo m iff x − y is a multiple (possibly zero or negative) of m. So if a′ − a is
a multiple of m, then so is (a′ + b) − (a + b) = a′ − a and a′b − ab = (a′ − a)b. This
underlies tricks such as the digit-sum test for divisibility by 9. Since 10 ∼= 1 mod 9, so
10n = 10×· · ·× 10 ∼= 1×· · ·× 1 mod 9, so any integer 10an+10n−1an−1+ · · ·+10a1+a0
is congruent to the sum of its base-10 digits an + an−1 + · · ·+ a1 + a0.

Let’s take one more conceptual leap: we’ll define a system of modular arithmetic
consisting of a set whose elements are themselves entire sets of integers, and where
addition and multiplication work on entire sets at once. First, two definitions.

Definition. A relation on a set S, usually denoted with a tilde as in a ∼ b, is a statement that
we define to be true or false for every ordered pair of elements a, b ∈ S. (You can also think of
relations as a subset R of S2: the relationship a ∼ b is true if (a, b) ∈ R.)

Definition. An equivalence relation on a set S is a relation that satisfies the following ax-
ioms:

1. Reflexivity: a ∼ a is always true for every a ∈ S.

2. Commutativity: a ∼ b and b ∼ a are either both true or both false for every pair of
elements a, b ∈ S.

3. Transitivity: If a ∼ b and b ∼ c, then a ∼ c for every triple of elements a, b, c ∈ S.

Equivalence relations partition the set that they’re defined on into a collection of
disjoint equivalence classes: a ∼ b is true if a and b are in the same equivalence class,
and false otherwise. We can firm up our understanding of this definition with a few
examples.

1. Define a ∼1 b to be true if a and b have the same first digit when written in base
10, ignoring negative signs (so, for instance, 19 ∼1 −162 is true but 19 ∼1 20 is
false). Then ∼1 is an equivalence relation: it’s reflexive (a ∼ a is true because
every number has the same first digit as itself, it’s symmetrical (a ∼ b implies
b ∼ a) because the definition gives a and b symmetrical roles, and it’s transitive
because if a and b have the same first digit, and so do b and c, then.

2. Define a ∼2 b to be true if a has at least as many digits as b when written in base
10, again ignoring a negative sign (so, for instance, 20 ∼2 9 and 1000 ∼2 −1001
are true, but 2 ∼ 20 is false). This is not an equivalence relation, as it’s reflexive
and transitive but not symmetric: for instance, 20 ∼2 9 is true but 9 ∼2 20 is false.



1.12. OPTIONAL: QUOTIENT SPACES 63

Now let’s apply this notion to modular arithmetic. Pick some positive integer m,
and let a ∼ b be the relation on Z that is true if a− b is a multiple (positive, negative, or
zero) of m. It’s easy to show that ∼ is an equivalence relation:

1. a ∼ a is true because a− a = 0, and zero is a multiple of m.

2. If a − b is a multiple of m, then b − a = −(a − b) is also a multiple of m, so
commutativity holds.

3. If a−b and b−c are multiples of m, then so is a−c = (a−b)+(b−c), so transitivity
holds.

The equivalence classes are the sets of integers with the same remainder modulo m.
Let’s take m = 5, for instance. The equivalence classes are then:

• Integers congruent to 0 modulo 5; that is, {. . . ,−10,−5, 0, 5, 10, . . .}. We’ll denote
this set 0.

• Integers congruent to 1 modulo 5; that is, any integer of the form 5n+ 1. This set
is {. . . ,−9,−4, 1, 6, 11}. We’ll denote it 1.

• Integers congruent to 2 modulo 5: {. . . ,−8,−3, 2, 7, 12, . . .}. We’ll denote it 2.

• Integers congruent to 3 modulo 5: {. . . ,−7,−2, 3, 8, 13, . . .}. We’ll denote it 3.

• Integers congruent to 4 modulo 5: {. . . ,−6,−1, 4, 9, 14, . . .}. We’ll denote it 4.

Now let’s write Z5 for the set of sets {0, 1, 2, 3, 4}. Let’s define the sum of two entire
sets as follows: if A and B are equivalence classes, then choose any arbitrary integers
a ∈ A and b ∈ B. The sum A+B is the equivalence class that contains a+ b.

The appearance of the word “arbitrary” should get your guard up: how do we
know that no matter how we choose a and b, the sum a + b will be in the same equiv-
alence class? Fortunately, as we saw before, the properties of modular arithmetic save
us. If instead of a we chose some other representative a′ of the same equivalence class
(which, by the way that we defined these equivalence classes, must differ from a by
a multiple of m), then the resulting sum a′ + b also differs from a + b by a multiple
of a. The argument that choosing a different representative b of B doesn’t change the
equivalence class of a+ b is, of course, identical.

By this definition, then, what is 2 + 4? If we choose representative elements 2 ∈ 2
and −6 ∈ 4, for example, then the sum 2 + 4 is the class that contains 2 + (−6) = −4:
that is, 1. Different representative elements give the same result, though: if we choose,
say, 7 ∈ 2 and 9 ∈ 4 instead, then the sum 16 is also in 1.

You can check for yourself that multiplication on Z extends to multiplication on
Z5 (and Zm for arbitrary positive integers m more generally) by the same mechanism:
choose representative integers a, b from the equivalence classes A,B, multiply them,
and define the product AB to be the equivalence class containing the product ab. This
equivalence class, thanks to the properties of modular arithmetic, is the same no matter
which representatives you choose.

To sum up, the construction of Z5 follows a particular pattern called a quotient con-
struction that occurs throughout mathematics:

1. Take a set (in this example Z) with some arithmetic operations defined on it.



64 CHAPTER 1. VECTOR SPACES AND ASSOCIATED CONCEPTS

2. Define an equivalence relation on this set, often by defining two elements to be
equivalent if their difference is in a particular subset. It’s important to check that
this relation is in fact an equivalence relation.

3. Define arithmetic operations on subclasses via representative elements. This step
requires checking that every possible choice of representative elements from each
pair of equivalence classes produces a result in the same equivalence class.

1.12.2 Not all equivalence relations give well-defined operations

It’s crucial to check that our equivalence relation actually produces operations that
don’t depend on the choice of representative element: this is not guaranteed simply
by the equivalence relation axioms. For instance, suppose we used the equivalence
relation defined as a ∼ b if a and b have the same first digit (ignoring negative signs) to
divide Z into equivalence classes: 1̂ is the set of integers whose first digit is 1, 2̂ is the
set whose first digit is 2, and so on. (We’ll use 1̂ to indicate that this is a different set
from 1 in the construction of Z/5Z.) If we try to define addition of these equivalence
classes using representative elements, we run into the problem that different represen-
tative elements give different results. For instance, we could have 1̂ + 2̂ = 1̂ with the
representative elements 11+ 2 = 13, or 1̂ + 2̂ = 2̂ with representatives 199+ 2 = 201, or
even 1̂+2̂ = 6̂ with −14+20 = 6 (and these are not the only possiblities), so addition on
these equivalence classes is not well-defined. (Neither is multiplication: for instance,
7× 8 = 56 and 79× 89 = 7031 don’t have the same first digit.)

Even constructions much closer to modular arithmetic, with equivalence classes
defined as sets of elements whose differences belong to a particular subset, sometimes
don’t have well-defined arithmetic operations. Consider, for instance, the set of real
numbers with the equivalence relation x ∼ y if x− y is an integer. We’ll write the set of
resulting equivalence classes as R/Z. Equivalence classes have the form {. . . , a− 2, a−
1, a, a + 1, a + 2} for real numbers a; for instance, {. . . ,−1.8,−0.8, 0.2, 1.2, 2.2, . . .} is
one equivalence class (which we’ll denote 0.2, choosing whatever element a lies in the
range 0 ≤ a < 1 as the canonical representative), and {. . . ,−1.5,−0.5, 0.5, 1.5, 2.5, . . .}
is another one (we’ll denote this 0.5).

We can extend addition on R to addition on R/Z without a problem: if a, a′ are two
representatives of the same equivalence class (that is, a′ − a is an integer), and ditto
for b, b′, then a + b and a′ + b′ must differ by an integer. But multiplication isn’t well
defined: different representative elements produce products that belong to different
equivalence classes. For instance, if we choose 0.2 ∈ 0.2 and 0.5 ∈ 0.5 as representative
elements, then the 0.2× 0.5 would be the equivalence class that contains 0.2× 0.5 = 0.1
(which is 0.1). But if we chose 2.2 ∈ 0.2 and 3.5 ∈ 0.5 as representatives instead, then
the product would be whichever equivalence class contains 2.2×3.5 = 7.7, namely 0.7.

1.12.3 Vector space operations on cosets

Quotient spaces in linear algebra are a close analogy to modular arithmetic. Where
modular arithmetic divides integers into equivalence classes based on whether their
difference is in the set of multiples of some fixed modulus m, quotient spaces divide
a vector space into equivalence classes based on whether their difference is in some
susbpace.

To be more precise:
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Definition. let V be a vector space over some field F, and let W be a subspace of V . Then the
quotient space V/W is the set of all cosets of W by V/W .

Remember: each element of V/W is itself a set of vectors in V . We can define
addition and multiplication on V/W , making it into a vector space into its own right,
by using arbitrary representative elements like with modular arithmetic.

To be more precise: suppose A = a0 + W and B = b0 + W are cosets of W . Tem-
porarily, we’ll use the symbols ⊞ and ⊠ to refer to our extensions of V ’s vector space
operations to V/W : that is,

1. A ⊞ B is the coset of W containing a + b, where a ∈ A and b ∈ B are arbitrary
representative elements that may or may not equal a0 and b0. (We don’t know
yet whether ⊞ is the same operation as the more general addition of affine spaces
that we defined in 1.11.2, and for now, we’ll reserve the symbol + for this latter
operation.)

2. k ⊠ A is the coset of W containing ka, where a ∈ A is an arbitrary representative
element.

Let’s first prove that the operations ⊞ and ⊠ are well-defined: that is, every pos-
sible choice of elements from an input coset (for multiplication) or pair of cosets (for
addition) produces a result in the same output coset. First, let’s prove this for ⊞. Take
arbitrary elements a and a′ of A, and b and b′ are both elements of B. That is, their dif-
ferences wa := a′−a and wb := b′−b are both in W . Then (a′+b′)− (a+b) = wa+wb,
which is a multiple of W , so a + b and a′ + b′ are in the same coset of W . This means
that whether you choose a and b as representatives or a′ and b′, you’ll get the same
result for A⊞B.

The proof that ⊠ is well-defined is similar. For some scalar k ∈ F and some coset A,
we could define k⊠A as the coset containing ka for some representative element a ∈ A,
or the coset containing ka′ for any other representative element. But ka′−ka = k(a′−a),
and since a′ − a ∈ W by the definition of cosets, so is k(a′ − a). So ka′ and ka are in the
same coset of W .

Can we write a formula for the resulting cosets? If we choose a0 and b0 as repre-
sentatives for A = a0 + W and B = b0 + W , then we get A ⊞ B = (a0 + b0) + W . It
turns out that A + B, with + defined as the regular sum of affine spaces as in section
1.11.2, is also just (a0 + b0) + (W + W ) = (a0 + b0) + W . So ⊞, which we defined
for cosets of the same subspace, coincides in this case with the general definition for
sums of cosets of possibly different subspaces, and we don’t need to use the special sym-
bol ⊞ (which, in any case, isn’t standard notation) to disambiguate them. Similarly,
k ⊠ (a+W ) = k(a+W ) = (ka) +W , and we can drop the symbol ⊠.

These definitions of scalar addition and multiplication satisfy the necessary vector
space axioms:

1. V/W has an additive identity, namely 0+W = W . Every element a0 +W has an
additive inverse, namely −a0 +W .

2. The commutative, associative, and distributive properties all hold, because arith-
metic on V/W is based on arithmetic on V , and these properties also hold in V .
For instance, if A and B are two cosets of W , then A + B is (by definition) the
coset containing a+b for arbitrary representatives a ∈ A,b ∈ B, and B+A is the
coset containing b+ a. But a+ b = b+ a because addition on V is commutative
by definition of a vector space.
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If quotient spaces still sound abstract to you, some examples might help. Let W1 =
span{e1, e2} ⊂ R3 be the set of vectors (x, y, 0), or the plane z = 0. Two other vectors
u = (x1, y1, z1),v = (x2, y2, z2) ∈ R3 can be in the same coset of W (that is, v − u ∈
W ) if and only if z1 = z2; that is, W1 is the xy-plane z = 0, and the quotient space
R3/W1 is a stack of horizontal planes z = c. So we can write every coset of W1 in the
form (0, 0, z) + W1 where z ∈ R, and, conversely, different choices of z always give
different cosets. (Essentially, taking the quotient of R3 by a two-dimensional space W1

“collapses” the x- and y-dimensions of R3 and leaves only the z-dimension. Keep this
intuition in mind for the next section!)

Now let’s define addition and multiplication on R3/W1. Let A = (0, 0, a) +W1 and
B = (0, 0, b) +W1 be two cosets. Then:

1. Any representatives a ∈ A and b ∈ B have the form a = (x1, y1, a), b = (x2, y2, b).
Their sum is a+ b = (x1 + x2, y1 + y2, a+ b), which is in (0, 0, a+ b) +W1.

2. Any scalar multiple ka has the form (x1, y1, ka), which is in (0, 0, ka) +W1.

So A + B = (0, 0, a + b) + W1 and kA = (0, 0, ka) + W1 (which is easy to see just
by choosing (0, 0, a) and (0, 0, b) as representative points and remembering that coset
doesn’t depend on the exact choice of representative set). This also means, incidentally,
that you can model arithmetic in R3/W1 by arithmetic in span{e3}, the one-dimensional
subspace of R3 that contains all of our chosen representative points.

Now let’s consider a more complex example. Let W2 ⊂ R4 be the span of

{(1, 0,−4, 2), (2, 3,−8, 3)}

and let’s work out a formula for the cosets of R4/W2, including a convenient represen-
tative point for each. Ideally, we’d like the representative points to be a subspace of
R4 in their own right, so that arithmetic on this subspace corresponds to arithmetic on
R4/W2.

The spanning set {(1, 0,−4, 2), (2, 3,−8, 3)} of W2 gives a general formula for its
elements: (a+2b, 3b,−4a−8b, 2a+3b), with a, b ∈ R freely chosen. We can get a simpler
formula, though, by replacing (2, 3,−8, 3) in the spanning set with a linear combination
that includes it. One choice is 1

3
[(2, 3,−8, 3) − 2(1, 0,−4, 2)] = (0, 1, 0,−1

3
). The new

spanning set {(1, 0,−4, 2), (0, 1, 0,−1
3
)} gives a simpler general form (x, y,−4x, 2x− 1

3
y)

for elements of W2.
Two elements u = (x1, y1, z1, w1) and v = (x2, y2, z2, w2) are in the same coset of W2

if their difference (x1 − x2, y1 − y2, z1 − z2, w1 −w2) satisfies this general form: that is, if
(z1− z2) = −4(x1−x2) and (w1−w2) = 2(x1−x2)− 1

3
(y1−y2). This means (setting z1 =

z2 = w1 = w2 = 0) that any two vectors of the form (x1, y1, 0, 0) and (x2, y2, 0, 0) can be
in the same subspace only if x1 = x2 and y1 = y2—that is, if the vectors are identical. So
span{e1, e2} is a complement of W2 and every coset of W2 can be designated uniquely
as (x, y, 0, 0) + W2. Then if A = (x1, y1, 0, 0) + W2 and B = (x2, y2, 0, 0) + W2, then
A+B = (x1 + x2, y1 + y2, 0, 0) +W2 and kA = (kx1, kx2, 0, 0) +W2.

1.12.4 Dimension of quotient spaces

The quotient space V/W essentially collapses every dimension of W down to a point,
so you might expect the dimension of V/W to be smaller than that of V . And in the
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above examples, taking quotients by a two-dimensional vector space reduces the di-
mension of the resulting space by 2: R3/W1 has dimension 1, and R4/W2 has dimension
2.

These observations can be made into a general result:

Theorem. If W is a vector subspace of V , then dimV/W = codimV .

Proof. Write n = codimW . Let B be a basis of W , and extend B to a basis of V by
adding more vectors v1, . . . ,vn (none of which, or any linear combination of them, can
be in W ). Write U := span{u1, . . . ,un}; U thus has dimension n, and V = U ⊕W .

We claim that every coset of W contains exactly one element of U . To see this, note
that any element v ∈ V can be written uniquely as v = u+w where u ∈ U,w ∈ W , so
v and u are in the same coset of w, and every coset contains at least one element of U .

Now we need to prove that no coset of W can contain two elements of U . Suppose
that u and u′ were distinct elements in the same coset; that is, u−u′ ∈ W \ {0}. Then u
could be written as a linear combination of u1, . . . ,un alone, or as w (a nonzero linear
combination of elements in B plus the linear combination of u1, . . . ,un that gives u′.
So two linear combinations of B ∪ {u1, . . . ,un} would have to be equal. But this is
impossible: B ∪ {u1, . . . ,un} is a basis of V , so it’s linearly independent.

Therefore, every coset of V/W can be written as u +W , where u is a unique point
in U . Since we can model vector arithmetic on cosets by using vector operations on the
base points, V/W must have the same structure as U , and the cosets v1+W, . . . ,vn+W
give a basis for V/W .

This proof that dimV/W = codimW holds even in the case when V and W have
infinite dimension but codimW has finite codimension. (Codimension in this context
is defined as the number of vectors we’d have to add to a basis of W to make a basis
of V .) With a bit more technical set theory, we could prove that if V/W has infinite
dimension, then so does codimW is also infinite. We won’t be dealing much with
infinite-dimensional vector spaces here, though.

Answers to key questions.

1. A relation on a set is a statement that is either true or false for every ordered
pair of elements in the set. An equivalence relation must satisfy the three axioms
of identity, reflexivity, and transitivity. An equivalence relation divides the set
it’s defined on into a collection of equivalence classes: the relation is true between
elements of the same class and false between elements of different classes.

2. ∼1 satisfies identity (a ≥ a is always true) and transitivity (a ≥ b and b ≥ c
together imply a ≥ c), but not reflexivity (a ≥ b doesn’t imply b ≥ a).

∼2 satisfies reflexivity (if |a − b| is a power of two, then so is |b − a|, because
|a − b| = |b − a|), but not identity (|a − a| = 0 and 0 is not a power of 2 by our
definition) or transitivity (for instance, 0 ∼ 4 and 4 ∼ 6 because |4 − 0| = 4 and
|6− 4| = 2 are both powers of 2, but 0 ̸∼ 6.

3. A quotient construction is a construction that defines operations on equivalence
classes of some set S created by some equivalence relation, using operations de-
fined on the original set S. The most common equivalence relations used in quo-
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tient constructions define elements to be equal if their differences are in some set
of multiples of a defining element.

4. The product of integers modulo 5 is well-defined modulo 5 (that is, if a ≡ a mod 5
and a′ ≡ b′ mod 5 then ab = a′b′ mod 5), but the product of real numbers is not
well-defined modulo 1: it’s possible to have real a, a′ with the same fractional
part, and likewise for b, b′, but ab and a′b′ don’t have the same fractional part.

5. Addition is not well-defined on these equivalence classes because if a is posi-
tive(i.e. a representative of the equivalence class of positive real numbers) and b
is negative, then a+ b could be positive (if |a| > |b|), zero (if |a| = |b|), or negative
(if |a| < |b|). Multiplication, though, is well-defined, because you know the sign
of ab if you know the signs of a and b. Specifically, ab is always zero if either a or
b is zero; otherwise, ab is positive if a and b have the same sign and negative if
they have different signs.

6. The dimension of V/W is dimV − dimW = 24− 8 = 16.



Chapter 2

Linear maps

2.1 Basic definitions and examples

Key questions.

1. What two properties must a linear map satisfy?

2. Suppose T : R2 → R2 is a linear map such that T (1, 1) = (2,−2) and T (0, 1) =
(3, 4). What is T (3, 2)?

3. Is the composition of two linear maps always linear?

4. Give an example of a nonlinear map T : R2 → R2 such that T (0, 0) = (0, 0).

Vector spaces by themselves aren’t that interesting: the interesting things to study
are linear maps from one vector space to another. If V and W are vector spaces over the
same field F (we can’t define linear maps between vector spaces over different fields!),
then a function f : V → W is linear if it satisfies these criteria:

1. Respect for addition: For any two elements v1,v2 ∈ V , f(v1 + v2) = f(v1) + f(v2).
Note that the addition on the left-hand side of this equation happens in V , and
the addition on the right-hand side happens in W .

This axiom implies its own generalization to sums of three or more terms: for
instance f(v1+v2+v3) = f((v1+v2)+v3) = f(v1+v2)+f(v3) = f(v1)+f(v2)+
f(v3).

2. Respect for scalar multiplication: For any element v ∈ V and any scalar k ∈ F,
f(kv) = kf(v). (Note that the left-hand side of this equation is scalar multiplica-
tion in V and the right-hand side is scalar multiplication in W . This is why we
can’t define linear maps between vector spaces over two different fields.)

One consequence is that f(0V ) = 0W , which follows from setting k = 0 and v to
an arbitrary vector in V ; this fact can be useful for quickly showing that a map is
not linear. (We’ll use subscripts on the symbol 0 to clarify which subspace’s zero
vector we’re referring to.)

We can unify these two axioms into one formula: if f is linear, then f(c1v1 +
· · · + cnvn) = c1f(v1) + · · · + cnf(vn) for any set of scalars c1, . . . , cn ∈ F and vec-
tors v1, . . . ,vn ∈ V . That is, if you know the values of f on any set of vectors S =
{v1, . . . ,vn} ⊂ V , then you know its values on the entire span of S.

69
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We usually denote linear maps with capital letters such as T and drop the parenthe-
ses that indicate function application (unless we need them to indicate correct order of
operations, such as distinguishing T (u+ v) from T (u) + v): ordinarily, we’ll write the
value of a map T on a vector v as just Tv. We also won’t write function composition
symbols: the map T1 : U → V composed with T2 : V → W is just written T2T1, not
T2 ◦ T1. (As always with function composition, the first function to be applied goes on
the right.)

You may think that this notation makes application and composition of linear maps
look like a sort of multiplication. This is intentional. It turns out that over finite-
dimensional spaces at least, linear maps can be represented by matrices containing the
coefficients in their formula, and vectors can be represented by column vectors (that
is, matrices with only one column). Applying linear maps to vectors, and composing
linear maps, turns out to be equivalent to multiplying their matrix representations
using standard matrix multiplication.

If all this discussion of the axiomatic definition of linear maps may seem too ab-
stract, some examples may make things clearer.

1. The map T : C2 → C given by T (z, w) = z+(3+i)w is linear. If k ∈ C is any scalar,
for instance, then T (kz, kw) = kz + (3 + i)kw = k(z + (3 + i)w) = kT (z, w), so T
respects multiplication. Similarly, T (z1+z2, w1+w2) = z1+(3+i)w1+z2+(3+i)w2 =
T (z1, w1) + T (z2, w2), so T respects scalar addition.

2. The map T : R3 → R4 given by T (x, y, z) = (y − 2z, x + 3z, y,−y) is also linear.
You might want to try to show this yourself.

3. The map T : R2 → R2 given by T (x, y) = (x2, 2y2), however, is not linear. You
can show this by noting that T (1, 1) = (1, 2) but T (2, 2) = (4, 8). Any linear map
T , however, has to satisfy T (2, 2) = 2T (1, 1) because it has to preserve scalar
multiplication.

4. The map T : R2 → R2 given by T (x, y) = (x + 1, y + 1) is also not linear. You can
show this by simply noting that T (0, 0) ̸= (0, 0), but every linear map has to take
the zero vector in its domain to the zero vector in its codomain.

One final result, not hard to prove but stil worth stating explicitly:

Proposition. The composition of two linear maps T1 : U → V and T2 : V → W is itself a
linear map from U to V .

Proof. To show that T2T1 respects addition, note that for any vectors u1,u2 we have
T2T1(u1 + u2) = T2(T1u1 + T1u2) (because T1 by itself respects addition), which equals
T2T1u1 + T2T1u2 (because T2 by itself respects addition). The argument that T2T1 re-
spects multiplication is similar.

Answers to key questions.

1. A linear map must satisfy respect for addition (its value on a sum of two inputs
is the sum of its values on the individual inputs) and respect for multiplication
(multiplying the input multiplies the output by the same factor).
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2. As (3, 2) = 3(1, 1)− (9, 1), so T (3, 2) = 3(2,−2)− (3, 4) = (3,−10).

3. Yes, the composition of linear maps is always linear.

4. There are many possibilities, for instance T (x, y) = (x2 + y2, 3
√
x).

2.2 General form of linear maps from Fm to Fn

Key questions.

1. If T : R3 → R2 is a linear map such that T (1, 0, 0) = (a, b), T (1, 1, 0) = (c, d), and
T (0, 1, 2) = (e, f), then what is T (x, y, z) in terms of a, b, c, d, e, f, x, y, z?

2. In general, a linear map from an m-dimensional vector space to an n-dimensional
space is determined by how many coefficients?

We mentioned in the last section that if you know the values of a linear map on any
set of vectors S, then you know its values on all of spanS. This also means that if you
know the map’s values on a basis of its domain, then you know its value on its entire
domain. We can use this to work out a general form for linear maps between any two
finite-dimensional vector spaces.

As an example, let’s work out a general form for linear maps from R2 to R3. Re-
member the notation e1 = (1, 0), e2 = (0, 1).

Suppose T : R2 → R3 is some linear map, and we know that Te1 = (a, b, c) and
Te2 = (d, e, f), where of course a, b, c, d, e, f ∈ R. Then for any other vector (x, y) ∈ R2,
we know that (x, y) = xe1 + ye2, so T (x, y) = T (xe1 + ye2) = x(Te1) + y(Te2) = (ax +
dy, bx + ey, cx + fy). You can easily show that any choice of the constants a, b, c, d, e, f
makes the map T (x, y) = (ax + dy, bx + ey, cx + fy) a valid linear map, so the set of
linear maps is represented completely by six coefficients.1

We can use this fact to find a general formula for linear maps T : R2 → R3 if we’re
given their values on a basis of R2 that’s not the standard basis {e1, e2}. Suppose, for
instance, we knew that T : R2 → R3 was a linear map such that T (1, 1) = (0, 2,−1)
and T (−2,−4) = (2, 0, 2), and want to find a formula for T . We can do this by using
linearity properties to find the values of Te1 and Te2. In this case, 4(1, 1) + (−2,−4) =
2e1, so 4T (1, 1) + T (−2,−4) = 2T (e1) = (2, 8,−2), so Te1 = (1, 4,−1). Similarly, you
can use 2(1, 1) + (−2,−4) = −2e2 to find that −2Te2 = (2, 4, 0), so Te2 = (−1,−2, 0).
The only linear map T : R2 → R3 with these values on the standard basis vectors is
T (x, y) = (x− y, 4x− 2y,−x).

(Later, when we discuss change-of-basis matrices, we’ll discuss algorithms for find-
ing combinations of specified vectors that add up to the standard basis vectors.)

This reasoning generalizes to all maps T : Fm → Fn over spaces with generalized
dimension and base field. Each of the n components of the value of Tv is a linear
combination, with fixed coefficients chosen freely from F, of the m components of the
input vector v. Thus, T is determined by a choice of mn coefficients.

1As a preview of matrix representation of linear maps: if we represent element (x, y) and (x, y, z) of

R2 and R3 as one-column matrices
[
x
y

]
and

xy
z

, then we can represent the matrix T as

a d
b e
c f

. Then

T (x, y) is the matrix product

ax+ dy
bx+ ey
cx+ fy

 =

a d
b e
c f

[x
y

]
, with standard matrix multiplication.
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Answers to key questions.

1. We can work out that T (0, 1, 0) = T (1, 1, 0)−T (1, 0, 0) = (c−a, d−b) and similarly
T (0, 0, 1) = 1

2
(T (0, 1, 2)− T (0, 1, 0)) = 1

2
(a− c+ e, b− d+ f). So

T (x, y, z) =

(
ax+ (c− a)y +

1

2
(a− c+ e)z, bx+ (d− b)y +

1

2
(b− d+ f)z

)
.

2. mn coefficients.

2.3 The set of linear maps is a vector space

Key questions.

1. How can you define the sum of two linear maps? What about the product of a
linear map by a scalar?

2. What does the notation Hom(V,W ) mean? If V has dimension 5 and W has di-
mension 6, what is dimHom(V,W )?

If V,W are two vector spaces over the same field F, then we can define addition and
scalar multiplication on the set of linear maps from V to W , making the set of linear
maps itself a vector space. T1 + T2 is the map that sends every v ∈ V to to T1v + T2v,
and cT is the map that sends v to c(Tv). This space is often denoted Hom(V,W ) (short
for “homomorphism,” a term with a more general definition in abstract algebra).

We still have to check that these definitions satisfy the axioms for vector space
operations. In particular, addition on Hom(V,W ) must satisfy the abelian group ax-
ioms of associativity, commutativity, identity, and inverses; scalar multiplication must
distribute with both vector space and field addition as well as satisfy the pseudo-
associative law a(bT ) = (ab)T ; and scalar multiplication by 1 leaves a map unchanged.
(Review section 1.4 if you need a reminder.) Most of these axioms, though, follow
quickly from the fact that the same axioms are also true for W .

1. Associativity of addition holds because ((T1 + T2) + T3)v = (T1 + T2)v + T3v by
definition of the sum of the maps (T1 + T2) and T3, and you can further expand
this into (T1v + T2v) + T3v by definition of the sum of the maps T1 and T2. You
can similarly expand (T1 + (T2 + T3))v out into T1v + (T2v + T3v), which equals
(T1v + T2v) + T3v because W is a vector space and sums of is elements (such as
T1v, T2v, and T3v) must be associative.

2. Showing commutativity of addition is similar.

3. The map that takes every vector in V to 0W is a zero element of Hom(V,W ), and
the sum of T and the negative map v 7→ −Tv is the zero element, so every map
has an additive inverse.

4. To show that scalar multiplication distributes over map addition, note that we
can expand k(T1 + T2)v into k(T1v + T2v) by the definition of the sum of linear
maps, and then into k(T1v)+k(T2v) by the distributivity of addition. Meanwhile,
(kT1)v = k(T1v) and (kT2)v = k(T2v) by the definition of scalar multiples of
maps, so (kT1 + kT2)v = k(T1v) + k(T2v). So k(T1 + T2) = kT1 + kT2.
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5. Showing that scalar addition distributes over scalar multiplication, i.e. (k1+k2)T =
k1T + k2T , is similar.

6. The pseudo-associativity axiom (ab)T = a(bT ) holds because by our definitions,
(ab)T is the map from v(ab)(Tv) and a(bT ) is a times the map v 7→ b(Tv) (i.e.
v 7→ a(b(Tv)), and the equality of (ab)(Tv) and a(b(Tv)) is just the pseudo-
associativity axiom on W .

7. The product of any map with the scalar 1 is the map itself, because (1T )v = 1(Tv)
by definition of map multiplication, and 1 times any element of W (such as Tv) is
the same element of W by the vector space axioms on W .

If dimV = m and dimW = n, then the dimension of Hom(V,W ) is mn. Here’s one
possible choice of basis: choose bases {v1, . . . ,vm} of V and {w1, . . . ,wn} of W . Then
for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n, put the linear map that sends vi to
wj , and sends every other vector vk for k ̸= i to 0 into this basis.

In the case of Hom(R2,R3), for example, the six basis maps constructed in this fash-
ion, using the standard bases for R2 and R3, are (x, y) 7→ (x, 0, 0), (x, y) 7→ (0, x, 0),
(x, y) 7→ (0, 0, x), (x, y) 7→ (y, 0, 0), (x, y) 7→ (0, y, 0), and (x, y) 7→ (0, 0, y). Each of these
maps corresponds to setting one of the coefficients a, b, c, d, e, f in the generic formula
T (x, y) = (ax+dy, bx+ey, cx+fy) to 1, and the others to 0. It’s easy to prove that adding
two maps, or multiplying one map by a scalar, is equivalent to adding (or scaling) their
defining coefficients.

Answers to key questions.

1. The sum of two maps T1 + T2 is the map that takes an input v to T1v + T2v. The
multiple kT is the map that takes v to k(Tv).

2. Hom(V,W ) is the vector space of linear maps between two vector spaces V and
W . If dimV = 5 and dimW = 6, then dimHom(V,W ) = 5× 6 = 30.

2.4 Kernel and image

Key questions.

1. What is the kernel of a linear map T : V → W ? What is its image? Which one of
the kernel and image can we denote T (V ), and which can we denote T−1({0W})?

2. If B is a basis of V and T ∈ Hom(V,W ), then what set is always a spanning set
for imT ?

3. Define bijective, injective, and surjective.

4. If T : R3 → R4 is an injective map, what are the possible dimensions of kerT ?

5. Suppose T ∈ Hom(R3,R5). Could T be injective? Could it be surjective? Could it
be bijective? Give an example for each possible case. Repeat for T ∈ Hom(R5,R3)
and T ∈ Hom(R3,R3).
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2.4.1 Definitions

Any map T : V → W defines two vector subspaces, one of V and one of W , whose
relationship is a foundational result of linear algebra.

Definition. Let T : V → W be a linear map between two vector spaces. The image of T ,
denoted imT ⊆ W , is the set of values of T . That is, w ∈ W is in imT if and only if there’s
some v ∈ V such that Tv = w. (This is the same definition of image as the set-theoretic
definition for arbitrary functions between two sets.)

The kernel of T , denoted kerT ⊆ V , is the set of elements v ∈ V such that Tv = 0W (or,
in our more concise set-theoretic notation, the preimage T−1({0W})).

It’s easy to prove that these spaces satisfy the three subspace axioms of closure
under addition, closure under multiplication, and non-emptiness.

Proposition. The kernel and image of any linear map T : V → W are subspaces of (respec-
tively) V and W .

Proof. We’ll prove that each set in turn satisfies the three subspace axioms:

• Image: Suppose w ∈ imT , and choose v ∈ V such that Tv = w. Then T (kv) = kw
for any scalar k, so kw ∈ imT . So imT is closed under multiplication. Similarly, if
w1 = Tv1 ∈ imT and w2 = Tv2 ∈ imT , then w1+w2 = T (v1+v2) ∈ imT , so imT
is closed under addition. Finally, imT cannot be empty, because every function
whose domain contains at least one element (and vector spaces must contain 0 at
least) has to have at least one value.

• Kernel: If Tv = 0, then T (kv) = k(Tv) = k0 = 0, so kerT is closed under
multiplication. Similarly, if Tv1 = Tv2 = 0, then T (v1 + v2) = Tv1 + Tv2 =
0 + 0 = 0, so kerT is closed under addition. Finally, kerT has to include at least
0V , so it can’t be empty.

These results still apply for maps whose domains are subspaces of some larger
vector space. That is, if U is a subspace of V and T : V → W is a map, then the image
and kernel of the restricted map T |U are also subspaces: imT |U = {Tu : u ∈ U} is a
subspace of W , and kerT |U = {u ∈ U : Tv = 0} is a subspace of U (and, therefore, of
V ). In particular, kerT |U = U ∩ kerT . The point about images is enough to denote a
proposition:

Proposition. Linear maps send subspaces to subspaces. That is, the image of any subspace of
a linear map’s range is a subspace of its domain.

Proof. Just given.

The values of T : V → W on a basis of V provide a spanning set (not necessarily
a basis!) for W . If {v1, . . . ,vn} is a basis of V , and we define wi := Tvi for 1 ≤ i ≤ n,
then any element of imT can be written as T (c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn,
which is in span{w1, . . . ,wn}. This, incidentally, means that linear maps cannot increase
the dimension of their inputs—at most, they can keep the dimension the same. A further
corollary is that no surjective linear map can exist from a lower- to a higher-dimensional space.
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2.4.2 Injectivity, surjectivity, isomorphism

A reminder of vocabulary from generic set theory: a function f : X → Y from a set X
to a set Y is:

• injective if there are no two elements of the domain x1, x2 for which x1 ̸= x2 but
f(x1) = f(x2).

• surjective if its image is all of Y : for every y ∈ Y there’s some x ∈ X such that
f(x) = y.

• bijective if it’s both injective and surjective.

The axioms for a linear map are restrictive enough that knowing the kernel of a
linear map is enough to tell you whether it’s injective: if a linear map T maps any two
elements to the same element, then it also must map multiple elements to 0. This is a
crucial result whose importance is out of proportion to how easy it is to prove:

Proposition. A linear map T : V → W is injective if and only if kerT = {0V }.

Proof. If kerT contains some element v ̸= 0, then Tv = T0V = 0W , so T isn’t injective.
Conversely, suppose T isn’t injective: that is, there are two different elements v1,v2 ∈
V such that Tv1 = Tv2. Then T (v1 − v2) = Tv1 − Tv2 = 0W , so v1 − v2 is a nonzero
element of kerT .

If a linear map T : V → W is injective and also surjective, then it establishes what
we’ll call an isomorphism2 between V and W . That is, it shows that V and W have
identical structure: T pairs every element of V with another element with W such that
the result of any arithmetic operation on V matches the result of the same operation
on the paired elements of W . One consequence: the existence of a surjective map from
V to W with kernel {0V } establishes that V and W have the same dimension. This is
an important enough result that we’ll prove it explicitly, with two pairs of proposition
and corollary:

Proposition. If T : V → W is bijective, then V and W have the same dimension.

Proof. Let {v1, . . . ,vn} be a basis for V . Then {Tv1, . . . , Tvn} is a spanning set of imT ;
and T is surjective, so imT = W . Furthermore, this set must be linearly independent.
To see why, suppose to the contrary that there was some nontrivial linear combination
c1Tv1+ · · ·+ cnTvn = 0W . Then the corresponding linear combination c1v1+ · · ·+ cnvn

must be in kerT , but couldn’t have a value of zero (because {v1, . . . ,vn} is linearly
independent). But T is bijective (and thus injective), so kerT can’t have nonzero ele-
ments, a contradiction.

Corollary. There are no injective linear maps from a higher-dimensional space to a lower-
dimensional space.

2Isomorphism is one of the words that keeps coming up in higher mathematics in many different
contexts: there are many other kinds of structures besides vector spaces that also have some notion of
isomorphism.
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Proof. If T : V → W is injective, then it’s bijective from V to imT , so dimV = dim imT .
Furthermore, imT is contained in W , so dim imT ≤ dimW .

Proposition. Let T : V → W be a linear map, and let S be a linearly independent subset of
imT . Construct a subset R of V that contains, for each vector si ∈ S, one arbitrary vector
ri ∈ V such that Tri = si.

Then R is also linearly independent, and the restricted map3 T |spanR : spanR → spanS is
a bijection.

Proof. We need to prove four statements:

1. R is linearly independent: if it weren’t linearly independent, then there would be
some nontrivial linear combination 0V = c1r1 + · · · + cnrn whose image under T
would be 0W = c1s1+· · ·+cnsn, because T0V = 0W for any linear map T : V → W .
But this contradicts the linear independence of S.

2. T |spanR is surjective onto spanS: any element c1s1 + · · · + cnsn of spanS equals
T (c1r1 + · · ·+ cnrn) and so is in the image of T |spanR.

3. T |spanR is injective: if kerT |spanR contained a nonzero element c1r1 + · · · + cnrn,
then its image under T would be a nontrivial nontrivial linear combination 0W =
c1s1 + · · ·+ cnsn that equaled 0W , a contradiction of the linear independence of S.

4. T |spanR doesn’t have any values outside spanS: if c1r1 + · · · + cnrn is an arbitrary
element of spanR, then its image T (c1r1 + · · ·+ cnrn) = c1s1 + · · ·+ cnsn must be
in spanS.

Corollary. There are no surjective linear maps from a lower-dimensional space to a higher-
dimensional space.

Proof. If T : V → W is surjective and S is a basis of W , then the above lemma guar-
antees the existence of a linearly independent set R ⊂ V the same size as S. The size
of a linearly independent set can be at most the dimension of its enclosing space, so
dimV ≥ |R| = |S| = dimW .

Answers to key questions.

1. The kernel of T is the subset of V containing all elements that T sends to 0W ,
or T−1({0W}). The image is the set of all elements of W to which T sends some
element of V , or T (V ).

2. imT is always spanned by T (B) = {Tb : b ∈ B}, the set containing the image of
every element of B.

3Reminder: if f : X → Y is any function from a set X to a set Y , and Z is a subset of X , then the
restricted function f |Z : Z → Y satisfies f |Z(x) = f(x) whenever x ∈ Z and is undefined for inputs
outside of Z.
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3. Injective = no two elements of the domain map to the same element. Surjective =
every element in the codomain is the image of something in the domain. Bijective
= both injective and surjective.

4. dimkerT can only equal zero (as is the case for injective maps on spaces of any,
including infinite, dimension).

5. A linear map T ∈ Hom(R3,R5) could be injective and not surjective (for example,
T (a, b, c) = (a, b, c, 0, 0)), but it can’t be surjective (or, therefore, bijective).

A linear map T ∈ Hom(R5,R3) could be surjective and not injective (for example,
T (a, b, c, d, e) = (a, b, c), but it can’t be injective (or, therefore, bijective).

A linear map T imHom(R3,R3) can be bijective (and thus both injective and sur-
jective); for example, T (a, b, c) = (a, b, c).

2.5 Rank–nullity theorem

Key questions.

1. State the rank–nullity theorem. What alternate statement of the rank–nullity theo-
rem is valid in finite-dimensional vector spaces?

2. (⋆⋆) Let R∞ be the set of infinite sequences of real numbers with only a finite
number of nonzero entries, and let T : R∞ → R3 be the map T (a1, a2, a3, a4, . . .) =
(a1, a1 + a2, 0). What are imT and kerT ? Show that dim imT = codimkerT by
finding explicit bases for imT and kerT , and a set of elements of R∞ that you can
use to extend the basis of kerT to a basis of R∞.

The result that we established in the last chapter, that any bijective map has the
same dimensions of domain and image, is a special case of a vital theorem called the
rank–nullity theorem, which relates the dimension of a map’s image (sometimes called
its rank) and the dimension of its kernel (sometimes called its nullity) to the dimension
of its domain.

This theorem is important enough that at least one other textbook calls it the “Fun-
damental Theorem of Linear Algebra.” Learn it well!

Theorem (Rank–nullity). If T : V → W is a linear map, then dim imT = codimkerT .
(If dimV is finite and so codimkerT = dimV − dimkerT , then this means dim imT +
dimkerT = dimV .)

Proof. Write m := codimkerT . (Remember: the codimension of a subspace is the num-
ber of vectors you have to add to a basis for the subspace to get a basis for the larger
space.) Let B be a basis of kerT , and let v1, . . . ,vm be vectors such that B∪{v1, . . . ,vm}
is a basis of V . Our notation assumes that codimkerT is finite, but similar reasoning
works when codimkerT = ∞.

We claim that S := {Tv1, . . . , Tvm} forms a basis for imT , so dim imT = m. Proving
this requires proving two claims:

1. S is a spanning set of imT : We can write any element of V as u+ c1v1 + · · ·+ cmvm

where u ∈ kerT , so we can write every element of imT as T (u + c1v1 + · · · +
cmvm) = c1Tv1 + · · ·+ c1Tvm. So imT must be spanned by S.
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2. S is linearly independent: Suppose to the contrary that there’s a nontrivial linear
combination c1Tv1 + · · · + cmTvm = 0W . Then u := c1v1 + · · · + cmvm is an
element of kerT . But we can also write u, just like any element of kerT , as a
linear combination of elements of B. But this implies that B ∪ S is not linearly
independent, a contradiction, since we defined S to make B ∪ S a basis of V .

Remark. One mnemonic for remembering the formula dim imT = codimkerT is to note
that codimension and kernel alliterate (both begin with a K sound), and dimension and
image have rhyming first syllables, so the pairs that sound similar go on the same side
of the equation.

An intuitive way of thinking about the rank–nullity theorem might be this: ev-
ery linear map T collapses the dimensions of kerT to a single point and “removes”
dimkerT dimensions from the output.

A few corollaries:

1. As we already remarked, a linear map T : V → W is injective if and only if
kerT = {0V }; that is, if dimkerT = 0. The rank–nullity theorem thus implies that
T : V → W is injective if and only if dim imT = dimV .

2. A linear map between two spaces of the same finite dimension n can be bijective,
or it can be neither injective nor surjective. There are no other options.

Answers to key questions.

1. The rank–nullity theorem is that dim imT = codimkerT for any linear map T :
V → W . In the case when V is finite, we can write dim imT + dimkerT = dimV .

2. imT = {(x, y, 0) : z ∈ R3}, which has basis {e1, e2} ⊂ R3, so dim imT = 2. And
kerT is the set of sequences (a1, a2, a3, a4, . . .) such that a1 = a2 = 0. This has basis
{e3, e4, e5, . . .} where en is the sequence with 1 in the nth position and 0 else-
where. We can extend this to a basis of R∞ by adding e1 and e2, so codimkerT =
2.

2.6 Rank–nullity proof with first isomorphism theorem

Key questions.

1. If U is a subspace of a vector space V , what is the projection map π : V → V/U?

2. State the first isomorphism theorem. Under what circumstances is the map whose
existence is guaranteed by the first isomorphism theorem a bijection?

Another method of proving the rank–nullity theorem comes from a general result
called the first isomorphism theorem. We’ll use the results from section 2.4.2, but not the
rank–nullity theorem itself.
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Theorem (First isomorphism theorem). Let T : V → W be a linear map, and let U be a
subspace of kerT . Let π : V → V/U be the “projection map” that takes every element v ∈ V
to the coset v + U that contains it. (It’s simple to prove that π is linear, because addition and
multiplication of cosets in V/U are derived from operations on representative elements in V .)

Then there is a unique linear map T̃ : V/U → W such that T = T̃ ◦ π. Furthermore, if
U = kerT , then T̃ is bijective and gives an isomorphism between V/ kerT and imT .

The following diagram (called a “commutative diagram”) illustrates the various maps in
the theorem statement; in a commutative diagram, the maps given by composing the maps on
the arrow labels have to be the same for any possible path between two points:

V

V/U W

Tπ

T̃

Proof. First, note that π is surjective onto V/U , because every coset of U contains at
least one vector v and so occurs at least once as a value of π (namely π(v)). So as long
as T̃ can be defined to satisfy T = T̃ ◦ π, every value of T is also a value of T̃ ◦ π, so T
and T̃ have the same image.

We’ll define T̃ using arbitrary representative elements: for any coset C ∈ V/U ,
choose some arbitrary v ∈ C, and define T̃ (C) = Tv. (It should be clear that this is the
only possible choice for T̃ (C): if we choose anything besides Tv, then T = T̃ ◦ π won’t
hold.)

We need to check that T̃ is well-defined (i.e. different choices of representative give
the same value of T̃ ), and T̃ is injective if U = kerT .

1. T̃ is well-defined: By the definition of cosets, two vectors v1,v2 are in the same
coset C of U if v1−v2 ∈ U , and remember that U ⊆ kerT . So Tv1 = Tv2+T (v1−
v2) = Tv2 + 0W = Tv2; that is, choosing v1 or v2 as the representative of C will
give the same value of T̃ (C) = Tv1 = Tv2.

2. If U = kerT , then T̃ is injective: Suppose we have two representatives v1,v2 from
different cosets C1, C2 of kerT . Then T̃ (C1) − T̃ (C2) = Tv1 − Tv2 = T (v1 −
v2) ̸= 0W , because if v1 and v2 are in different cosets of kerT , then (by definition)
v1 − v2 /∈ kerT . Therefore, T̃ (C1) ̸= T̃ (C2). (If U is not all of kerT , then this
argument fails, as two elements v1,v2 in different cosets of U could be in the
same coset of kerT .)

One informal way that you might hear the first isomorphism theorem described is
that every linear map T : V → W can be “factored through” V/ kerT : that is, you can
split it into the projection map to V/ kerT and a bijection from V/ kerT to W .

The first isomorphism theorem implies the rank–nullity theorem as a corollary, be-
cause dim(V/ kerT ) = codimkerT (see page 67), and T̃ gives an isomorphism from
V/ kerT to im T̃ = imT .
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Answers to key questions.

1. The projection map π : V → V/U takes every element of V to the coset of U that
contains it.

2. The first isomorphism theorem is that every map T : V → W whose kernel
contains a subspace U can be written as T = T̃ ◦ π, where T̃ : V/U → W is a map
uniquely determined by T . And T̃ is bijective if kerT = U .

2.7 Dimensions of subspace and affine space images and
preimages

Key questions.

1. (⋆⋆) Suppose T : C10 → C7 is a surjective linear map, and A ⊂ C10 is an affine
subspace of dimension 3. What are the possible dimensions of T (A)? What about
if A has dimension 9? How do the answers change if we allow T to be non-
surjective?

2. (⋆⋆) Suppose T : R4 → R8 is an injective linear map and A ⊂ R8 is an affine
subspace of dimension 2. What are the possible dimensions of T−1(A), assuming
it’s non-empty? What about if A has dimension 6? What if we allow T to be
non-injective?

Reminder: f : X → Y is any function and S is a subset of Y , the preimage f−1(S) of
S is defined as {x ∈ X : f(x) ∈ S}. If we have two maps f : X → Y and g : Y → Z,
then (g ◦ f)−1(S) = f−1(g−1(S). Remember that the kernel of a linear map T : V → W
is a preimage of a one-point set: namely, kerT = T−1({0W}).

Similarly, the image f(S) of any subset S of X is the set {f(x) : x ∈ S} of images
of all elements of S—equivalently, it’s the image of the restricted function f |S . And
likewise, (g ◦ f)(S) = g(f(S)).

2.7.1 Images of affine spaces

We’ve mentioned the geometric intuition that a linear map T : V → W collapses the
dimensions of kerT but preserves the other dimensions. This intuition also applies to
the following result, which you can interpret as saying that T collapses dimensions of
an affine space that are parallel to kerT and preserves other dimensions.

Theorem. Let U be a subspace of a vector space V , and let A be a coset of U (U is a coset of
itself, so possibly A = U ). Let T : V → W be a linear map. Then T (A) is an affine subspace of
W with dimension dimU − dim(U ∩ kerT ).

Proof. First, let’s consider the case A = U . Since T (U) is the image of the restricted map
T |U , it must be a vector subspace (and therefore an affine subspace) of W . We get the
dimension formula dimT (U) = dimU − dim(U ∩ kerT ) by applying the rank–nullity
theorem to the restricted map T |U : U → W , because kerT |U = U ∩ kerT .

Now let’s look at the general case where A is a coset of U , and write X = T (U). We
just proved that X has dimension dimU−dim(U ∩kerT ), so we only need to show that
T (A) is a coset of X .



2.7. DIMENSIONS OF SUBSPACE AND AFFINE SPACE IMAGES AND PREIMAGES81

If v1,v2 are any two elements of A, then v1−v2 ∈ U and so Tv1−Tv2 = T (v1−v2) ∈
X . That is, the the difference of any two elements in T (A) is in X , so T (A) must be
contained in a coset of X . Write this coset as Ta0 + X , where a0 is some arbitrary
element of A. We’ll prove that T (A) is actually the entire coset Ta0 +X .

To prove this, we need to show that Ta0 + X ⊆ T (A): that is, for every element
w ∈ Ta0 + X , there’s some a ∈ A such that Ta = w. First, define x = a0 − w. Since
x is the difference of two elements of a coset of X , it must be in X . Since T (U) = X
by definition, there’s some element u ∈ U such that Tu = x. Then a0 + u ∈ T (A) and
T (a0 + u) = Ta0 + x = w, so w is the image of some element of A. This completes the
proof.

2.7.2 Preimages of points and affine spaces

The following two results on dimensions of preimages of affine spaces are mainly use-
ful to prove a result on the dimension of the kernel of compositions of linear maps. The
first presents a result for single-point sets (that is, affine spaces of dimension zero); the
second result generalizes it.

Proposition. If T : V → W is a linear map and w ∈ imT , then T−1({w}) is a coset of kerT .
Furthermore, each different choice of w produes a different coset T−1({w}).

Proof. We’ll offer two proofs. One proof applies the first isomorphism theorem (page
79), which tells us that T = T̃ ◦ π, where π : V → V/ kerT is the projection map and
T̃ : V/ kerT → imT is a bijection. So if w ∈ imT , then T̃−1(w) is a single element
of V/ kerT . Since π maps all the elements in a coset of kerT to a single element of
V/ kerT , so T−1(w) = π−1(T̃−1(w)) is a single coset of kerT . And T̃ is a bijection, so
T̃−1(w) (which equals T−1({w})) must be different for each different value of w.

For a second proof, take any vector w ∈ imT , and choose some v ∈ V such that
Tv = w. Then for any other vector u ∈ V , T (v + u) = w if and only if Tu = 0W :
that is, if u ∈ kerT . That is, T−1(w) precisely equals v + kerT . This correspondence
between elements w ∈ imT and cosets v + kerT is bijective because if two elements
v1,v2 ∈ V are in different cosets of kerT , then their difference v1 − v2 is not in kerT
and so Tv1 − Tv2 = T (v1 − v2) ̸= 0W ; that is, Tv1 ̸= Tv2.

A generalization (remember that single-vector sets are cosets of {0}):

Theorem. Let T : V → W be a linear map, X be a subspace of W , and A be a coset of X
contained in imT (like with the previous proposition, the case A = X is allowed). Then T−1(X)
is a subspace of V with dimension dimX + dimkerT , and T−1(A) is a coset of T−1(X).

Proof. The theorem conclusion comprises three statements:

1. T−1(X) is a vector subspace of V . We need to check that T−1(X) satisfies the three
subspace axioms.

(a) Closure under addition: Let v1,v2 be arbitrary elements of T−1(X), and define
x1 := Tv1,x2 := v2. Then T (v1 + v2) = Tv1 + Tv2 = x1 + x2 is the sum of
two elements of X , so it is also in X because X , as a vector subspace, is also
closed under addition. So v1 + v2 ∈ T−1(X).
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(b) Closure under multiplication: Let v be an arbitrary element of T−1(X), define
x := Tv, and let k be an arbitrary scalar. Then T (kv) = kx ∈ X because X is
closed under multiplication, so kv ∈ T−1(X)).

(c) Non-emptiness: Any subspace X ⊆ W includes 0W , so T−1(X) includes 0V .

2. T−1(X) has dimension dimX + dimkerT . Let BX be a basis of X . Define a set BU

that contains one vector u ∈ V such that Tu = x for each vector in x. Define
U = spanBU .

By page 76, BU is linearly independent, and the restricted map T |U is a bijection
from U to X . In particular, kerT |U (which equals U ∩ kerT ) is just {0V } and the
subspace sum U + kerT is direct.

We claim that U ⊕ kerT = T−1(X). We’ll prove this set equality by proving
inclusion in each direction:

(a) U ⊕ kerT ⊆ T−1(X): Let u ⊕ k be an arbitrary element of U ⊕ kerT , with
u ∈ U and k ∈ kerT . Then T (u+k) = Tu+Tk = Tu+0W = Tu. This vector
must be in X , because T |U is a bijection from U to X . So u+ v ∈ T−1(X).

(b) T−1(X) ⊆ U ⊕ kerT : Let v be an arbitrary element of v ∈ T−1(X). Let u
be the (necessarily unique) element of U such that Tu = Tv (as T |U gives a
bijection between U and X , so u must exist and be unique). Then Tv−Tu =
T (v − u) = 0W , so v is the sum of an element u of U and an element v − u
of kerT .

3. T−1(A) is a coset of T−1(X) = U ⊕ kerT , with U defined as in statement 2. Choose
some arbitrary base point a0 ∈ A, and choose v0 ∈ V such that Tv0 = a0 (v0 must
exist because A ⊆ imT ). We claim that T−1(A) = v0+(U⊕kerT ). Again, proving
set equality requires proving inclusion two ways.

(a) v0 + (U ⊕ kerT ) ⊆ T−1(A): We can write an arbitrary element v of v0 + (U ⊕
kerT ) as v = v0+u+k, where u ∈ U and k ∈ kerT . So Tv = Tv0+Tu+Tk =
a0 + Tu. We know that Tu ∈ X , so Tv ∈ a0 +X = A, so v ∈ T−1(A).

(b) T−1(A) ⊆ v0+(U⊕kerT ): To show this, it’s enough to show that v0 ∈ T−1(A)
(which is true because Tv0 = a0 ∈ T by definition), and that the difference
between any two elements of T−1(A) is in U ⊕kerT (that is, T−1(A) does not
contain elements from two different cosets of U ⊕kerT ). If we take arbitrary
elements v1,v2 ∈ T−1(A), then T (v2 − v1) = Tv2 − Tv1 is the difference of
two elements in A; that is, it is in X . Therefore, v2 − v1 ∈ T−1(X).

Note that we’ve never assumed that any of the spaces or subspaces in the theorem
statement has finite dimension.

There are two corollary results that will be useful later.

Corollary. If T : V → W is linear and A is an affine subspace of W that is not necessarily
contained in imT , then T−1(A) is either empty or an affine subspace of V with dimension at
most dimA+ dimkerT .
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Proof. Elements of A outside imT don’t contribute to the preimage T−1(A), so T−1(A) =
T−1(A∩ imT ). So if T−1(A) is not empty, then dimT−1(A) = dimkerT +dim(A∩ imT ),
and dim(A ∩ imT ) ≤ dimA.

Corollary. Suppose T1 : U → V and T2 : V → W are two linear maps. Then dimkerT1 ≤
dimker(T2T1) ≤ dimkerT1 + dimkerT2.

Proof. The lower bound dimker(T2T1) ≥ dimkerT1 follows from noting that if u ∈
kerT1, then T2T1u = T20V = 0W , so kerT1 ⊆ ker(T2T1).

For the upper bound dimker(T2T1) ≤ dimkerT1 + dimkerT2, note that ker(T2T1) =
T−1
1 (kerT2): that is, if T1 takes some element of U into kerT2, then T2T1 takes that ele-

ment to 0. Thus, by the previous corollary, dimker(T2T1) = dimkerT1 + dim(kerT2 ∩
imT1) ≤ dimkerT1 + dimkerT2.

Remark. This result generalizes to compositions of three or more maps: for instance,
dimker(T3T2T1) ≤ dimkerT3 + dimker(T2T1) ≤ dimkerT1 + dimkerT2 + dimkerT3.

Answers to key questions.

1. The map T reduces the dimension of an affine space A by dim(W ∩ kerT ) where
W is the vector subspace of which A is a coset. If T is surjective, then kerT =
3 by rank–nullity and the intersection of two dimension-3 spaces in a space of
dimension 6 can be anywhere from 0 to 3. So 0 ≤ dimT (A) ≤ 3.

If A and thus W have dimension 9, then W ∩ kerT has dimension either 2 or 3,
because codim(W ∩ kerT ) ≤ codimA + codimkerT = 1 + 7 = 8. So T (A) has
dimension either 6 or 7.

If we allow T to be non-surjective, then kerT could have any dimension ≥ 3 (and
thus any codimension ≤ 7). So if dimA = dimW = 3, then dim(W ∩ kerT ) also
has dimension between 0 and 3, and the answer doesn’t change. If dimA = 9,
then W ∩ kerT could have any dimension between 2 and 9, so T (A) could have
any dimension between 0 and 7.

2. If T is injective, then dim imT = 4 and dimkerT = 0, and dimT−1(A) = dim(A ∩
imT ). If dimA = 2, then A ∩ imT could have any dimension between 0 and 2, or
be empty, and this is also the set of possible dimensions of T−1(A).

If dimA = 6, then A ∩ imT could have any dimension between 2 and 4, or be
empty. This is also the set of possible dimensions of T−1(A).

If we allow T to be non-injective, then dimkerT and dim imT could be anything,
provided they add to 4. If dimA = 2, then the maximum possible dimension
of T−1(A) is 4, given when imT is completely contained in A (which requires
dim imT < 2.

If dimA = 6 and dim imT = n, dimkerA = 4 − n for 0 ≤ n ≤ 4, then dim(A ∩
imT ) (provided it’s not empty) could be anything from 0 to n for n = 0, 1, 2, and
anything from n − 2 to n for n = 3, 4. The corresponding dimensions of T−1(A)
are 4− n to 4 for n = 0, 1, 2 and 2 to 4 for n = 3, 4. Combining these results for all
N means that T−1(A) could have any dimension between 2 and 4, the same as if
T is required to be injective.
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2.8 Map inverses

If T : V → W is a bijective linear map, then we can define the inverse map to T , notated
T−1 : W → V , which takes every w ∈ W to the vector v such that Tv = w. This is just
the ordinary definition of an inverse function from set theory.

It is easy to prove that if T is linear, then T−1 is linear as well:

1. If Tv1 = w1 and Tv2 = w2, then T (v1 + v2) = w1 + w2. Thus, T−1(w1 + w2) =
v1 + v2 = T−1w1 + T−1w2, so T preserves addition.

2. If Tv = w, then T (kv) = kw. Thus, T−1(kw) = kv = kT−1w.

There are algorithms for computing the formula for a linear map’s inverse given the
formula of the forward map. We can’t present them just yet; much of our discussion
of matrix theory will be devoted to developing a procedure for computing inverses of
linear maps.



Chapter 3

Operators

3.1 Operators and invariant subspaces

Key questions.

1. What is the relationship between the terms linear map, operator, and endomor-
phism?

2. What is an invariant subspace of an operator? What are the trivial invariant sub-
spaces?

In the last chapter, we looked at general linear maps between two spaces V and
W . In this chapter, we’ll focus on maps T : V → V from one space to itself. These
are called operators or endomorphisms on the space V . The set of endomorphisms can be
denoted End(V ); it’s also a vector space in its own right with the operations of addition
and scalar multiplication of maps that we discussed in Section 2.3.

The theory of endomorphisms on one space is more interesting than the theory
of general linear maps between different spaces because linear operators can be com-
posed with themselves. In particular, if T is a linear operator on V , then the functions
T 2 := T ◦ T , T 3 := T ◦ T ◦ T , and so on are also linear operators on V , as are sums
and multiples of these linear operators such as T 3 − 5T 2 + 6T . We can make algebraic
manipulations on such polynomials of linear operators almost exactly the same way as
with polynomials whose variables represent elements of ordinary fields, such as real
or complex numbers—for instance, just like we can factor x3−5x2+6x = x(x−2)(x−3)
for a polynomial on a real variable x, we could also factor T 3 − 5T 2 + 6T = T ◦ (T −
2I) ◦ (T − 3I), where I is the identity operator Iv = v.

If V is finite-dimensional, then the rank–nullity theorem dimV = dimkerT+dim imT
guarantees that any operator T ∈ End(V ) falls in one of these two categories:1

1. kerT = {0}, so dim imT = dimV and T is a bijection from V to itself.

2. kerT has nonzero dimension and dim imT < dimV , so imT is a proper subspace
of V , so T is neither injective nor surjective.

1Counterexamples for infinite-dimensional spaces: consider FN, the set of infinite sequences of ele-
ments of F. Then the operator (x1, x2, x3, . . .) 7→ (x2, x3, x4, . . .) is surjective but not injective (sequences
that differ only in x1 have the same values), and the map (x1, x2, x3, . . .) 7→ (0, x1, x2, . . .) is injective but
not surjective (the image includes only sequences that start with 0).

85
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The core of linear algebra is a classification of linear operators according to their
invariant subspaces, defined as follows:

Definition. An invariant subspace of an operator T : V → V is any subspace W ⊆ V such
that T (W ) ⊆ W : that is, if w ∈ W , then Tw ∈ W as well.

(Note that despite the possible implications of the term invariant, T doesn’t have to
take every element of W to itself, just to some (possibly different) element of W .

One fact that makes invariant subspaces useful is that if W is an invariant subspace
of T , then the restricted map T |W is an operator on W , so every result about oper-
ators on entire vector spaces can also be applied to restricted operators on invariant
subspaces.

From this definition alone, the following properties are easy to prove:

1. {0} and V are invariant subspaces of every operator. We call these trivial invari-
ant spaces.

2. Every subspace is an invariant subspace of the identity operator I .

3. If W1 and W2 are invariant subspaces of any operator, then so are W1 ∩ W2 and
W1 +W2. (This claim may not be obvious: think about why it’s true. Remember:
every element of W1 +W2 can be written as w1 +w2 for some choice of w1 ∈ W1

and w2 ∈ W2.)

Answers to key questions.

1. An operator is a linear map from one space to itself. Endomorphism is another word
for operator.

2. W is an invariant subspace of an operator T : V → V if whenever w ∈ W , Tw ∈ W
as well. T will always have {0} and V (that is, its entire domain) as invariant
subspaces, so we call these trivial invariant subspace.

Answers to key questions.

1. An operator is a linear map from a vector space to itself (i.e. with the same space
as domain and codomain).

3.2 Results on invariant subspaces

This section will present a few small results on invariant subspaces. Throughout, V is
an arbitrary (not necessarily finite-dimensional) vector space, T is an arbitrary operator
on V , and I is the identity operator. We’ll also adopt the notation kT to mean the map
that takes v to kTv and T1 + T2 to mean the map that takes v to T1v + T2v, just as in
Section 2.3.

Proposition. kerT and imT are invariant subspaces of T .

Proof. If v ∈ kerT , then Tv = 0 ∈ kerT , so kerT is an invariant subspace. And
Tv ∈ imT by definition of the image for any v ∈ V , so in particular, Tv ∈ imT for any
v ∈ imT . So imT is also an invariant subspace.
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Proposition. If W is any subspace of a vector space V , then the set of operators that have W
as an invariant subspace is a vector subspace of End(V ).

Proof. Let S ⊆ End(V ) be the set of operators with W as an invariant subspace. We
have to check the three subspace axioms.

1. Non-emptiness: Every subspace of V is invariant under the zero operator Zv = 0:
if W is an arbitrary subspace, then Zw = 0 ∈ W for all w ∈ W . So S at least
contains Z.

2. Closure under addition: Suppose W is an invariant subspace of T1 and T2. Then for
any w ∈ W , we have (T1 + T2)w = T1w+ T2w, which is the sum of two elements
of W . So W must also be invariant.

3. Closure under multiplication: if k is any scalar and T is an operator with W as an
invariant subspace, then (kT )w = k(Tw) for any w ∈ W (by definition of scalar-
by-operator multiplication). As Tw ∈ W , so k(Tw) ∈ W .

Proposition. If W is an invariant subspace of two (possibly identical) operators T1, T2 : V →
V , then it’s also an invariant subspace of T1 ◦ T2.

Proof. For any vector w ∈ W , we have T2w ∈ W (because W is invariant under T2) and
therefore also (T1 ◦ T2)w = T1(T2w) ∈ w (because W is invariant under T1).

Corollary. Any invariant subspace of T is also an invariant subspace of T n for all nonnegative
integers n.

Proof. By the previous proposition, any invariant subspace of T is also an invariant
subspace of T ◦ T = T 2, T ◦ T 2 = T 3, and so on. Furthermore, T 0 is the identity map I ,
and any subspace is an invariant subspace of the identity map.

Corollary. Any invariant subspace of an operator T is also an invariant subspace of the poly-
nomial cnT n + cn−1T

n−1 + · · ·+ c1T + c0I , where c0, . . . , cn are arbitrary scalars and I is the
identity map.

Proof. Any invariant subspace of T is also an invariant subspace of I (because every
subspace is invariant with respect to I), and we’ve just proved that it’s invariant under
T 2, . . . , T n. So it’s also invariant under any linear combination of I, T, T 2, . . . , T n, be-
cause the space of operators with a certain invariant subspace is a subspace of End(V ).

3.3 Eigenvectors and eigenspaces

Key questions.

1. What is an eigenvector of an operator T ? What’s the difference between an eigen-
value of a vector and an eigenvalue of an operator? (In particular, which vector’s
eigenvalues do we not count as eigenvalues of an operator, and why?)
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2. Can any vector besides 0 have multiple eigenvalues? Why or why not?

3. Does the set of eigenvectors of an operator with eigenvalue zero form a vector
subspace? What about the set of eigenvectors with a particular eigenvalue λ ̸= 0?
What about the set of all eigenvectors of an operator, regardless of eigenvalue?

4. Give a formula T (x, y) = (ax+ by, cx+ dy) with real numbers a, b, c, d such that T
has no eigenvalues as an operator on R2, but does have eigenvalues as an opera-
tor on C2.

3.3.1 Definitions

Let V be a vector space over a base field F, and let T : V → V be a linear operator on V ,
and let v be some vector in V . Suppose that Tv is a multiple of v: that is, Tv = λv for
some scalar λ. Then we define the following terms. These definitions are absolutely
crucial: make sure you learn them!

1. v is an eigenvector of T .

2. λ is an eigenvalue of the vector v.

If v = 0, then Tv = λv = 0 for every possible scalar λ, so v is trivially an
eigenvector with every scalar as an eigenvalue. But if v ̸= 0, then it can have at
most one eigenvalue: if Tv = λ1v = λ2v with λ1 ̸= λ2, then (λ1 − λ2)v = 0, but a
nonzero scalar λ1 − λ2 times a nonzero vector v can’t be 0 (see page 29).

3. If v ̸= 0, then λ is called an eigenvalue of the operator T . An operator can have
multiple eigenvalues, as we’ll see soon.

From this definition, we can prove that the set of eigenvectors S of an operator
T : V → V with a particular eigenvalue λ is a vector subspace of V . To prove this, we
have to check the three subspace axioms (see page 36):

1. Non-emptiness: S must include 0, because T0 = 0 = λ0 no matter what T and λ
are.

2. Closure under addition: The sum of any two eigenvectors is an eigenvector with
the same eigenvalue: if Tv1 = λv1 and Tv2 = λv2, then T (v1+v2) = λv1+λv2 =
λ(v1 + v2).

3. Closure under multiplication: If Tv = λv, then T (kv) = kT (v) = k(λv) = λkv, so
kv is also an eigenvector with eigenvalue λ.

We’ll call the vector subspace comprising all the eigenvectors with a certain eigen-
value a maximal eigenspace, and any subspace of a maximal eigenspace will just be an
eigenspace with no adjective attached.

Note that eigenspaces are the sets of eigenvectors with a particular eigenvalue. The
sum of nonzero eigenvectors with different eigenvalues, as we’ll prove in the next
section, can never itself be an eigenvector.
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3.3.2 Examples

To make this abstract discussion more concrete, let’s look at a few simple transforma-
tions and compute their eigenvalues and eigenvectors.

1. The operator T (x, y) = (2x, 3y) on R2 sends e1 = (1, 0) to 2e1 = (2, 0), so e1
is an eigenvector of T (x, y) with eigenvalue 2. Every multiple of e1 is also an
eigenvector with eigenvalue 2: T (ke1) = T (k, 0) = (2k, 0) = 2(ke1). (Even more
generally, if Tv = λv, then T (kv) = k(Tv) = kλv for any scalar k, so any multiple
of an eigenvector is also an eigenvector with the same eigenvalue.) Similarly,
e2 = (0, 1), and all of its scalar multiples, are eigenvalues with eigenvector 3. So
T has two maximal eigenspaces: span{e1} with eigenvalue 2, and span{e2} with
eigenvalue 3.

(Again, 0 is an eigenvector of any operator and has every value of the base field
as an eigenvalue: T0 = λ0 = 0 for every operator T and scalar λ. When we talk
about the eigenvalues of an operator, we mean the eigenvalues of eigenvectors
other than 0.)

2. The map T (x, y, z) = (2x, 2y, 0) on R3 has e1 = (1, 0, 0) and e2 = (0, 1, 0) as eigen-
vectors, with eigenvalue 2 in each case. Furthermore, any linear combination of
e1 and e2—that is, any vector of the form (x, y, 0)—is also an eigenvector with
eigenvalue 2, as T (x, y, z) = (2x, 2y, 0) = 2(x, y, 0).

e3 = (0, 0, 1) is an eigenvector with eigenvalue zero, because T (0, 0, 1) = (0, 0, 0) =
0(0, 0, 1). Any eigenvector of T with eigenvalue zero is, by definition, in kerT
(and vice versa: the elements of kerT are all eigenvalues with eigenvalue zero),
so T has nonzero kernel (and so can’t be bijective) if and only if it has zero as an
eigenvalue. This fact becomes crucial later: there is a simple formula for comput-
ing the product of the eigenvalues of an operator on a finite-dimensional vector
space, and if this product is zero, the operator can’t be bijective.

So T has two maximal eigenspaces: span{e1, e2} with eigenvalue 2, and span{e3}
with eigenvalue 0.

3. The map T (x, y) = (x + y, 3x + 3y) has eigenvectors (1, 3) with eigenvalue 2 (be-
cause T (1, 3) = (2, 6)) as well as (1,−1) with eigenvalue 0. The spans span{(1, 3)}
and span{(1,−1)} are maximal eigenspaces of T . Again, note the link between
non-bijectivity and eigenvalue zero: the image of T contains only the multiples
of (1, 3).

4. T (x, y) = (−x− y, 2x− 4y) has eigenvectors (1, 1) (with eigenvalue −2) and (1, 2)
(with eigenvalue −3). You may notice that it would be a bit harder to compute
the eigenvalues of this map just by looking at the formula than to compute the
eigenvalues of, say, T (x, y) = (2x, 3y). Later, we’ll discuss a method to compute
the eigenvalues of a linear operator. This method requires finding roots of poly-
nomials with degree dimV , and you generally would not want to do it without
a computer, but it provides the underpinning for a vast amount of scientific and
statistical computing.

5. TR(x, y) = (−y, x), as an operator on R2, is geometrically a rotation of the plane
R2 about the origin 90 degrees counterclockwise. You shouldn’t be surprised that
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this rotation changes the direction of every nonzero vector and so doesn’t have
any nonzero eigenvectors. But the operator TC : C2 → C2 with the same formula
TC(x, y) = (−y, x) does have eigenvectors, namely (1, i) with eigenvalue −i, and
(1,−i) with eigenvalue i. The fact that an operator over a complex vector space
can have more eigenvectors than the operator with the same formula over a real
vector space will prove crucial for our analysis of real operators: it’s often more
convenient to identify real operators with the complex operators with the same
formulas, especially for performing certain calculations.

It will gradually become clearer why the theory of eigenvectors and eigenspaces
is worth studying. But there are a few broad reasons that we can at least allude to in
advance:

1. For operators on finite-dimensional spaces, there is an algebraic formula, the de-
terminant, that gives the product of the eigenvalues of the operator (raised to an
integer power that is always at least the dimension of the corresponding maxi-
mal eigenspace). Since an operator is bijective if and only if it doesn’t have 0 as
an eigenvalue, checking if the determinant of an operator is zero will also tell you
if it’s bijective.

2. Eigenvalues and eigenspaces are the foundation for a set of classification theo-
rems for linear operators, most importantly, the result that you can always find
a basis for which a linear operator on a finite-dimensional complex space has a
matrix representation of a particular type called Jordan normal form. The matrices
that result from these classification theorems, furthermore, make it easier to glean
some important aspects of a linear operator’s behavior at a glance, analogous to
how factoring a polynomial to find its roots can also make it easier to visualize.

3. They facilitate computations, especially with iterated applications of operators.
Suppose, for instance, that you know that some vector u can be written as c1v1 +
c2v2, where v1 and v2 are eigenvectors of T with eigenvalues λ1 and λ2. Suppose
you want to compute T nu: that is, the result of applying the map T to u n times.
Finding a general formula for T n given a formula for T can require a lot of com-
putation, but if you notice that T nu = T n(c1v1+ c2v2) = c1λ

n
1v1+ c2λ

n
2v2, you can

reduce the problem to simply computing powers of the scalars λ1 and λ2, and
this requires much less computation. (Of course, there’s the problem of how to
find the coefficients c1 and c2 in the first place—a problem that leads to the theory
of matrix diagonalization and change-of-basis matrices. We’ll discuss this more
in the next chapter, when we introduce matrix representations of linear maps.)

Answers to key questions.

1. An eigenvector of an operator T is any vector v such that Tv is a multiple of v.
If Tv = λv where λ is a scalar, then λ is an eigenvalue of the vector v. But λ only
counts as an eigenvalue of T if v ̸= 0, because 0 has every eigenvalue.

2. No: a nonzero vector v can have only one eigenvalue.

3. The set of eigenvectors with any single specified eigenvalue (including zero) is a
vector subspace. But the set of all eigenvectors regardless of eigenvalue isn’t,
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because the sum of eigenvectors with different eigenvalues is not generally an
eigenvector (In fact, it’s never an eigenvector, as we’ll prove later.)

4. One example is the rotation 90 degrees counterclockwise: T (x, y) = (−y, x).

3.4 Maximum eigenspace dimensions

Key questions.

1. When is a linear combination of eigenvectors also an eigenvector?

2. Is there a linear operator T : R4 → R4 that has two dimension-2 eigenspaces with
different eigenvalues? What about two dimension-3 eigenspaces?

You may have noticed from the examples in the last section that most maps only
have a few eigenvalues. For instance, maps such as T (x, y) = (2x, 3y) and T (x, y) =
(−x− y, 2x− 4y) have two eigenspaces with dimension 1, and maps such as T (x, y) =
(2x, 2y) have a single two-dimensional eigenspace. But could we find an operator on a
two-dimensional space that has three nonzero eigenvectors with different eigenvalues?
It turns out that we can’t: the total dimensions of the eigenspaces of an operator on V
are limited by dimV . We’ll establish this by a series of propositions.

Proposition. Suppose v1, . . . ,vn are nonzero eigenvectors of some operator T , with all distinct
eigenvalues λ1, . . . , λn. Then {v1, . . . ,vn} is linearly independent.

Proof. We work by induction on n. The base case n = 1 is trivial: every set containing
a single nonzero vector is linearly independent.

Now for the induction step, assume that for n ≥ 2 arbitrary, every set of n − 1
eigenvectors with distinct eigenvalues is linearly independent. Suppose there’s a lin-
early dependent set of n eigenvectors {v1, . . . ,vn} with distinct eigenvalues λ1, . . . , λn.
We can write vn (after renumbering the vi if necessary) as a linear combination of the
others:

vn = c1v1 + · · ·+ cn−1vn−1

where at least one of the coefficients ci is nonzero.
This equation gives us two expressions for λnvn. We can multiply the equation by

λn, giving
λnvn = λnc1v1 + · · ·+ λncn−1vn−1.

But we can also apply T to both sides, giving

λnvn = λ1c1v1 + · · ·+ λn−1cn−1vn−1.

Subtracting the first equation from the second gives

0 = (λ1 − λn)c1v1 + · · ·+ (λn−1 − λn)cn−1vn−1.

This is a linear combination of {v1, . . . ,vn−1} that has to be nontrivial, because all of the
expressions λi − λn and at least one of the coefficients ci are nonzero. But the existence
of this linear combination contradicts the induction hypothesis that {v1, . . . ,vn−1} was
linearly independent. So {v1, . . . ,vn} must be linearly independent.
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Remark. This result also applies to infinite sets. Any infinite set of eigenvectors with
distinct eigenvalues must be linearly independent, because an infinite set is linearly
independent if and only if all of its finite subsets are also linearly independent (see
page 42). Such a set can only exist in an infinite-dimensional vector space.

Corollary. No linear combination of two or more nonzero eigenvectors with different eigenval-
ues can be an eigenvalue itself.

Proof. Suppose u is a linear combination c1v1 + · · ·+ cnvn of eigenvectors with distinct
eigenvalues. If u is also an eigenvector, then either it has the same eigenvalue as one
of the vectors v1, . . . ,vn, or it has a different eigenvalue from all of them. But both
cases let us construct a linearly dependent set of eigenvectors with distinct eigenvalues,
contradicting the previous proposition:

1. If u has a different eigenvalue from all of the v1, . . . ,vn, then {v1, . . . ,vn,u} is a
linearly dependent set of eigenvectors with distinct eigenvalues.

2. If u has the same eigenvalue as one of the other vi (let’s say, v1 with eigenvalue
λ1), then u − c1v1 is the difference of two eigenvectors with eigenvalue λ1, so it
also has eigenvalue λ1. But u− c1v1 = c2v2 + · · ·+ cnvn, so {u− c1v1,v2, . . . ,vn}
is a linearly dependent set of eigenvectors with distinct eigenvalues.

Corollary. Suppose W1, . . . ,Wn ⊆ V are eigenspaces of T with all distinct eigenvalues. Then
the subspace sum W1 + · · ·+Wn is direct.

Proof. If this sum were not direct, then (by definition of direct sums) there would be a
nontrivial linear combination 0 = c1w1 + · · ·+ cnwn of eigenvectors w1 ∈ W1, . . . ,wn ∈
Wn with all distinct eigenvalues, but such a combination is impossible.

Corollary. The sum of dimensions of maximal eigenspaces of V is at most dimV .

Proof. Call the maximal eigenspaces W1, . . . ,Wn. Maximal eigenspaces must all have
different eigenvalues from each other: if W and W ′ are distinct eigenspaces with the
same eigenvalue, then W +W ′ is also an eigenspace that contains W and W ′, so neither
W nor W ′ can be maximal. The subspace sum of maximal eigenspaces is direct, so
dim(W1⊕ · · ·⊕Wn) = dimW1+ · · ·+dimWn. But W1⊕ · · ·⊕Wn ⊆ V , so dimW1+ · · ·+
dimWn ≤ dimV .

3.5 Operator algebra

Key questions.

1. What additional operation does an associative algebra define beyond a vector space?
What are the axioms that it must satisfy?

2. If a is an element of an associative algebra over R and a × a = b, then what is
(2a)× (2a)?
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3. If we want to treat the set of operators End(V ) over a vector space V as an asso-
ciative algebra, what operation on End(V ) do we treat as multiplication?

4. What is a unital algebra? Is End(V ) a unital algebra for every vector space V ?
Why or why not?

5. If A,B are two linear operators on the same space and I is the identity operator,
then expand (A2 + A + 2B)2 and (2A + I)3 as a sum of products of individual
operators. Can you simplify the first expression if you know that AB = BA?

First, we’ll introduce one more concept from abstract algebra: that of an algebra,
which is a vector space whose elements can be multiplied by other vectors, not just
scalars. To be more precise, suppose that F is a field and A is a vector space over F.
Suppose that there’s an additional operation of vector multiplication on A, which takes
two elements of A and returns another element of A. We’ll denote this with the symbol
×. Then we call A an associative algebra over F if this operation obeys these four axioms:

1. Associativity: (a× b)× c = a× (b× c) for all a,b, c ∈ A.

2. Compatibility with scalar multiplication: (ka)×b = a× (kb) = k(a×b) for all k ∈ F
and a,b ∈ A.

3. Distributivity over vector addition on the left: (a1 + a2)×b = (a1 ×b) + (a2 ×b)) for
all a1, a2,b ∈ A.

4. Distributivity over vector addition on the right: a × (b1 + b2) = (a × b1) + (a × b2)
for all a,b1,b2 ∈ A.

(There is an even more general structure called an algebra, which satisfies axioms 2
through 4 but not 1, but we won’t discuss nonassociative algebras in this book.) Ax-
ioms 2 through 4 could be combined into a single bilinearity axiom: For every fixed
vector b ∈ A, the maps a 7→ a × b and a 7→ b × a are linear operators on A. Mul-
tiplication in an associative algebra has fewer axioms than associativity in a field: in
particular, it doesn’t have to be commutative or have an identity.

You can prove that the distribuitivity axioms for associative algebras and the ex-
istence of additive inverses in A (one of the vector space axioms) together imply that
a× 0 = 0× a = 0 for all a ∈ A. The proof is essentially identical to the corresponding
proof for field multiplication that we covered on page 24.

The upshot of these axioms is that if we have an associative algebra A over a field
F, we can manipulate algebraic expressions whose terms are elements of A and F in
basically the same way as if their terms were elements of ordinary number systems
such as R. We just have to be careful not to change the order of products of algebra
elements, because in general, a× b ̸= b× a. Neither, for that matter, must multiplica-
tion have a multiplicative identity or inverses of nonzero elements. (Algebras with a
multiplicative identity are sometimes called unital.) It would be a distraction to go into
detail with the theory of associative algebras, so we’ll just give two examples:

1. The vector space Fn is an associative algebra with the component-by-component
multiplication (a1, . . . , an) × (b1, . . . , bn) = (a1b1, . . . , anbn). It should be clear that
this definition of vector multiplication satisfies the requisite axioms of associa-
tivity, compatibility with scalar multiplication, and distributivity over vector and
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field addition, because vector and scalar multiplication are based directly on mul-
tiplication in the underlying field F.

This vector multiplication is commutative and has an identity (1, . . . , 1), but not
all nonzero vectors have inverses if n ≥ 2: if (a1, . . . , an) has at least one entry of
zero and at least one entry that is not zero, then (a1, . . . , an) ̸= 0 but there is no
vector (b1, . . . , bn) such that (a1, . . . , an)× (b1, . . . , bn) = (1, . . . , 1).

2. R3 is an associative algebra with the cross product multiplication (a1, a2, a3) ×
(b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1). (You may want to check that
the cross product satisfies the four axioms for associative algebra multiplication.)
The cross product, though, is not commutative (in fact, a × b = −b × a) and
also doesn’t have an identity (you may remember that the cross product of two
vectors is orthogonal to each vector, so e× v could equal v only if v = 0).

Like any set of linear maps between the same pair of vector spaces, the set of op-
erators on a vector space V with base field F is also a vector space over F if we define
addition and scalar multiplication of maps pointwise, as in Section 2.3. But since the
domain and range of a linear operator are the same, we can also compose linear op-
erators. And it turns out that map composition fits the axioms of multiplication in an
algebra:

1. Composition of linear maps, like composition of general functions on a set (see
page 13), is associative: A ◦ (B ◦ C) = (A ◦B) ◦ C.

2. Scalar multiplication and map composition are compatible: if α, β ∈ F are scalars
and A,B ∈ End(V ) are operators, then (αA) ◦ (βB) = (αβ)(A ◦ B). The proof
is straightforward: for any vector v ∈ V , we have (αβ)(A ◦ B)(v) = αβA(B(v))
(basically by definition of map-by-scalar multiplication), and similarly, (αA) ◦
(βB)v = αA(βB(v)) (again by definition of map-by-scalar multiplication), which
equals αβA(B(v)) because A is linear.

3. Composition left-distributes over operator addition: A ◦ (B + C) = (A ◦B) + (A ◦
C). If we have three operators A,B,C and an arbitrary vector v, we can expand
A ◦ (B + C)v = A(Bv + Cv) by the definition of the sum of the maps B and C,
and this equals (A◦B)v+(A◦C)v, which equals ((A◦B)+(A◦C))v by definition
of operator sums.

4. Composition right-distributes over operator addition: (A+B)◦C = (A◦C)+(B◦C).
The proof is similar to that of left-distribution.

Associative algebras don’t necessarily need to have an identity for multiplcication,
but End(V ) does have an identity, namely the identity map I , as T ◦ I = I ◦ T = T for
all operators T . (An algebra with a multiplicative identity is sometimes called “unital,”
but you don’t need to memorize this term.)

This analogy between between function composition and multiplication is what
justifies our use of exponential notation to indicate repeated function composition,
such as T 2 for T ◦ T , and T 3 for T ◦ T ◦ T . The algebra axioms also let expand and
factor operators almost as if we were expanding and factoring polynomials. For in-
stance, if T is an operator, then we can expand the expression (2T +5I) ◦ (3T − 4I) like
this:
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(2T + 5I) ◦ (3T − 4I)

= [(2T + 5I) ◦ (3T )] + [(2T + 5I) ◦ (−4I)] (left-distributivity)
= [(2T ) ◦ (3T )] + [(5I) ◦ (3T )] + [(2T ) ◦ (−4I)] + [(5I) ◦ (−4I)] (right-distributivity)
= 6(T ◦ T ) + 15(I ◦ T )− 8(T ◦ I)− 20(I ◦ I)

(compatibility of scalar multiplication and operator composition)

= 6T 2 + 15T − 8T − 20I (I is the identity of operator composition)
= 6T 2 + 7T − 20I (distributivity of scalar addition over scalar multiplication)

We could also reverse these steps and write 6T 2 + 7T − 20I as (2T + 5I)(3T − 4I).
Note the analogy to polynomial factorization (2x+ 5)(3x− 4) = 6x2 + 7x− 20.

The point where the analogy between polynomials and linear operators breaks
down is that unlike multiplication of real or complex numbers, operator composition
is not commutative: AB ̸= BA for generic operators on a vector space. (We’ll go
back to not writing explicit function composition symbols for linear maps.) So, for
instance, (A + B)2 = (A + B)(A + B) could be expanded to A(A + B) + B(A + B)
by left-distributivity and then further to A2 + AB + BA + B2 by right-distributivity,
but we can’t simplify this to A2 + 2AB + B2 unless we know that A and B commute.
But operators always commute at least with powers of themselves and with the iden-
tity operator; so, for instance, if B is the identity map I , we can simplify (A + I)2 to
A2 + 2A+ I .

3.6 Commutative operators

Key questions.

1. What does it mean for two operators to commute?

2. Suppose A and B are two linear operators on C2, and A and B both have 1 + i
and 2− i as eigenvalues. Do A and B necessarily commute?

In general, operators do not commute with each other: if T1, T2 : V → V are two
operators, then the compositions T2T1 (that is, applying T1 first, then T2) and T1T2 are
usually not the same. One simple example: consider the operators T1(x, y) = (y, x) and
T2(x, y) = (2x, y). Then T2T1(x, y) = (2y, x) and T1T2(x, y) = (y, 2x).

There is, in fact, a criterion that helps you determine (and, for some types of vector
space, completely determines) whether operators commute. To show this, though,
we’ll need a preliminary proposition:

Proposition. For any two operators T1, T2 : V → V , the set of vectors v ∈ V such that
T1T2v = T2T1v (sometimes called the commutator of T1 and T2) is a subspace of V .

Proof. This set is ker(T2T1 − T1T2), and kernels are subspaces.

Proposition. Let T1, T2 : V → V be two linear operators. If there is a spanning set of V whose
elements are all eigenvectors of both T1 and T2, then T1T2 = T2T1.
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Proof. If v is an eigenvector of both T1 with eigenvalue λ and T2 with eigenvalue µ,
then T1T2v = T1(µv) = µT1v = λµv and similarly T2T1v = T2(λv) = λT2v = λµv. That
is, T1T2v = T2T1v. So the commutator of T1 and T2 is a subspace of V that contains
every common eigenvector of T1 and T2. So if these common eigenvectors make up a
spanning set of V , then T1 and T2 must commute on all of V .

The converse of this result is not generally true: there are operators that commute
even though they don’t have common eigenvectors. One example on R2 is the set of
maps T (x, y) = (x cos θ − y sin θ, x sin θ + y cos θ) which produce rotations by an angle
θ counterclockwise about the origin. All of these maps commute with each other, even
though only the identity θ = 0 and the 180-degree turn θ = π have any eigenvectors
in R2 at all. The converse does, in fact, hold on finite-dimensional vector spaces over
C, because linear transformations often (to put it loosely) have more eigenvectors in C
than in R. But we’re not ready to prove this yet.

3.7 Generalized eigenvectors

Key questions.

1. What is a generalized eigenvector? If T ∈ End(Rn), then what operator’s kernel is
the set of generalized eigenvectors of order 3 and eigenvalue 2?

2. What is a generalized eigenspace of an operator T ∈ End(V )? Are generalized
eigenspaces always vector subspaces of V ? Are they always invariant subspaces
of T ? Why or why not?

3. Suppose u,v,w,x are four generalized eigenvectors of an operator T . Suppose
u and v have eigenvalue −5 and order 2, v has eigenvalue −5 and order 4, and
x has eigenvalue 2 and order 2. Is u + v a always, sometimes, or never a gener-
alized eigenvector? If it can be a generalized eigenvector, what are its possible
eigenvalues and orders? Answer the same questions for u+w and u+ x.

4. Explain how the reasoning that helped you answer the previous questions also
proves that any sum of generalized eigenspaces with distinct eigenvalues is di-
rect.

5. Construct an example of an operator on R3 that has a generalized eigenvector of
(a) order 3 and eigenvalue 0, (b) order 3 and eigenvalue 1. Can an operator on R3

have an eigenvalue of order 4?

3.7.1 Definitions

We can rephrase the eigenvector criterion Tv = λv as v ∈ ker(T − λI), where I is the
identity map I(v) = v, and subtraction and scalar multiplication on linear maps are
pointwise operations. This rephrasing gives us a more general notion:

Definition. A generalized eigenvector of an operator T with order n and eigenvalue λ
is an element of ker(T − λI)n that is not in ker(T − λI)n−1.
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Equivalently, we can give a recursive definition: 0 is a generalized eigenvector of
order zero for every eigenvalue, and v is a generalized eigenvector of order n if Tv−λv
is a generalized eigenvector of order n − 1. (As always, a superscript integer on an
operator denotes composition with itself.)

You may wonder why generalized eigenvectors are worth studying. The basic rea-
son is that we will want a way to find, for any operator T : V → V , a basis of V that
consists of eigenvectors of T . This basis is useful because it lets us write T in a simple
matrix form that makes many important properties clear. The problem is that such a
basis doesn’t always exist, but we can get a lot closer if we allow bases with general-
ized eigenvectors as well. In fact, if V is a finite-dimensional vector space over C, then
a basis of generalized eigenvectors of any operator on V always exists. (This is not an
intuitively obvious claim and will take us most of Chapter 6 to prove, but if I’ve done
my job well, the intuition will be relatively clear by the time we’ve worked through the
proof.)

Henceforth, we’ll also denote multiples of the identity map by simple scalars and
write, for instance, T − 2 to mean T − 2I .

Before we see why generalized eigenvectors are a useful concept, we have to study
a few more of their properties and give a couple more definitions closely modeled off
of the corresponding definitions for regular eigenspaces. If W is a subspace of V , and
every element of W is a generalized eigenvector of some operator T with the same
eigenvalue λ, then we’ll call W a generalized eigenspace with eigenvalue λ and order k,
where k is the largest order of any element in W . Like with ordinary, non-generalized
eigenspaces, we’ll call the set of all eigenvectors with eigenvalue λ and order ≤ k
the maximal generalized eigenspace with eigenvalue λ and order k. This space, by defini-
tion, is just ker(T − λ)k, and kernels are vector subspaces, so the maximal generalized
eigenspace by this definition is also a vector subspace.

Finally, the maximal generalized eigenspace with eigenvalue λ, without a specified order,
is the set of generalized eigenvectors with eigenvalue λ and any order. This is the
infinite union ker(T −λ)∪ ker(T −λ)2∪ ker(T −λ)3∪ · · · , where each term in the union
is a subspace of the next term. This is also a vector subspace of V , as an immediate
corollary of this proposition:

Proposition. Suppose V is a vector space and W1 ⊆ W2 ⊆ W3 ⊆ · · · is an infinite sequence
of (possibly not all distinct) nested subspaces of V . Define the infinite union X := W1 ∪W2 ∪
W3 ∪ · · · : that is, v ∈ X if v ∈ Wk for some positive integer k (and thus is also in Wℓ for all
integers ℓ ≥ k). Then X is a subspace of V . Furthermore, if the spaces Wi are all invariant
subspaces of an operator T , then X is also invariant under T .

Proof. To prove that X is a vector subspace, we’ll check the three subspace properties:

1. Closure under addition: Suppose v1,v2 ∈ X . Then there are integers k1, k2 such
that v1 ∈ Wk1 and v2 ∈ Wk2 . Define k = max(k1, k2). Then v1 and v2 are both in
Wk because Wk itself is a vector subspace and therefore closed under addition. So
v1 + v2 is also in Wk and thus in X .

2. Closure under addition: If v ∈ X , then v ∈ Wk for some integer k. Thus, cv ∈ Wk

for any scalar c because Wk is closed under multiplication, so cv ∈ X .

3. Non-emptiness: The subspaces Wi all have to include 0, so X does as well.
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To prove that X is invariant, note that if v is an arbitrary element of X , then v ∈ Wk

for some k. Thus, Tv ∈ Wk ⊆ X because Wk is invariant under T .

This result won’t be that useful to us, as we’re mostly interested in finite vector
spaces, and it turns out that generalized eigenvectors in an n-dimensional space can’t
have orders greater than n (so a maximal generalized subspace of unspecified order is
also a maximal generalized eigenspace of order n). But it is theoretically nice.

Maximal generalized eigenspaces (whether or not they have specified orders), as
we’ll see in a bit, are always invariant subspaces. Finally, note that by our definitions,
0 and {0} are a generalized eigenvector and a generalized eigenspace, both with order
zero. (This is because (T − λ)0, just like the zeroth power of any map, is the identity
operator, which has kernel {0}.)

3.7.2 Examples

An example should help to make this abstract discussion clearer. Consider the map
T : R4 → R4 given by T (x, y, z, w) = (3x + y, 3y, 2w, 0). This map has two generalized
eigenspaces of order 2:

1. One generalized eigenspace has basis {e1, e2} and eigenvalue 3. One basis vec-
tor for this space is e1 = (1, 0, 0, 0), which is an eigenvector because Te1 =
(3, 0, 0, 0) = 3e1. On the other hand, e2 = (0, 1, 0, 0) is a generalized eigenvec-
tor of T , because Te2 = (1, 3, 0, 0) and so (T − 3I)e2 = e1, which is an eigenvector
of T . Repeated application of the operator T − 3I establishes a “chain” of gener-
alized eigenvectors e2 7→ e1 7→ 0, each application reducing the order by 1, and
the nonzero elements of this chain make up a basis for the subspace.

2. The other generalized eigenspace has basis {e3, e4} and eigenvalue 0. In this
space, e3 is an eigenvector because Te3 = 0, so e3 ∈ kerT = ker(T − 0). Mean-
while, e4 is a generalized eigenvector of order 2, because Te4 = 2e3 and so
T 2e4 = 0. Again, we can describe this subspace with a chain basis e4 7→ 2e3 7→ 0.

The phrases “generalized eigenvector” and “generalized eigenspace” are cumber-
some, so from now on, we’ll use the abbreviations GEV and GES.

3.7.3 Sums of generalized eigenvectors and eigenspaces

As with ordinary eigenvectors, linear combinations of GEVs with the same eigenvalue
are also GEVs, but linear combinations of GEVs with different eigenvalues are not. The
rest of this section presents this result, and a corollary result that the sums of gener-
alized eigenspaces with distinct eigenvalues are always direct. The propositions here
are analogous to the results in Section 3.4, and use similar proof techniques. They’re a
bit cumbersome to state, but we’ll need them for bigger theorems later.

It’s easy to see that any nonzero scalar multiple of a GEV is also a GEV with the
same order: if k ̸= 0, then (T − λ)nv = 0 if and only if (T − λ)n(kv) = k(T − λ)nv = 0.
The sum of GEVs with the same eigenvalue is also a GEV, but it can have more than
one possible order. We’ll state the result below.
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Proposition. The sum of two GEVs v,w with the same eigenvalue λ and orders m and n is a
GEV with eigenvalue λ. If m ̸= n, then v+w has order max(m,n); if m = n, then v+w can
have any order between 0 and n.

Proof. Suppose m ≤ n (the m > n case is symmetrical). Then (T − λ)n(v + w) =
(T − λ)nv + (T − λ)nw = 0+ 0 = 0, so v +w is a GEV with order at most n. If m < n,
then (T − λ)n−1(v +w) = (T − λ)n−1w ̸= 0, so v +w has order exactly n.

If m = n, however, then (T − λ)n−1(v + w) is the sum of two nonzero vectors
(T −λ)n−1v and (T −λ)n−1w that could be each other’s negatives, so we can’t conclude
that v +w has order n. One family of counterexamples is v = u+ x,w = u− x where
u is a GEV of any order h ≤ n and x is a GEV of order n. In this case, v and w have
order n but v +w has order h.

This result has several important corollaries, the first of which we foreshadowed in
the last subsection:

Corollary. Maximal generalized eigenspaces of any order (or no order) are invariant subspaces.

Proof. Let V be a vector space, let T ∈ End(V ), and let W = ker(T be a GES of V
containing all vectors with eigenvalue λ and order ≤ n. For any w ∈ W , define v =
(T −λI)w = Tw−λw. Then v is a GEV with eigenvalue λ and order ≤ n−1, so v ∈ W .
So Tw = v + λw is the sum of two elements of W , so it’s also in W . This proves that
T (W ) ⊆ W , so W is an invariant subspace of T .

Corollary. Any set of nonzero GEVs with the same eigenvalue and distinct orders is linearly
independent.

Proof. Call the set S. Any nontrivial linear combination of vectors in S must be a GEV
whose order is the maximum order of any vector in the linear combination. In partic-
ular, it can’t have order zero, which is the order of the vector 0 and nothing else. So no
linear combination from S can equal 0, so S is linearly independent.

Corollary. No GEV of an operator on an n-dimensional space can have order greater than n.

Proof. If v is a GEV with eigenvalue λ and order k, then {v, (T − λ)v, . . . , (T − λ)k−1v}
is a set of k generalized eigenvectors with every order from 1 to k, so by the previous
corollary, it must be linearly independent. And an n-dimensional vector space can’t
contain a set of more than n linearly independent vectors. Thus, k ≤ n.

Finally, sums of GEVs with different eigenvalues can’t be GEVs themselves, just as
with ordinary eigenvectors.

Proposition. Any (possibly infinite) set of nonzero GEVs with distinct eigenvalues is linearly
independent.
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Proof. We’ll prove this for finite sets of size n first; the logic is similar to the analogous
result for ordinary eigenvectors. The n = 1 case is trivial: any one-vector set is linearly
independent as long as the vector it contains isn’t 0. For n = 2, any linearly dependent
set of two nonzero vectors must have each vector be a scalar multiple of the other, but
such vectors must have the same eigenvalue and order.

By induction for n ≥ 3, suppose {v1, . . . ,vn} is a linearly dependent set of nonzero
GEVs with orders m1, . . . ,mn and distinct eigenvalues λ1, . . . , λn. By the induction
hypothesis, {v1, . . . ,vn−1} is linearly independent, so if {v1, . . . ,vn} is linearly depen-
dent, then we can write vn as a linear combination vn = c1v1 + · · · + cn−1vn−1, where
at least one of the scalars c1, . . . , cn−1 is nonzero. Applying the operator (T − λn)

mn

to both sides of this equation gives a linear combination 0 = c1(λ1 − λn)
m1v1 + · · · +

cn−1(λn−1 − λn)
mn−1vn−1 that must be nontrivial because λn does not equal any of the

other eigenvalues λi, contradicting the induction hypothesis.
The generaliztion to infinite sets follows because an infinite set is linearly indepen-

dent if and only if all of its finite subsets are as well.

Corollary. No nonzero linear combination of two or more nonzero GEVs with distinct eigen-
values can be a GEV itself.

Proof. Let v1, . . . ,vn be GEVs with eigenvalues λ1, . . . , λn, and suppose u := c1v1 +
· · · + cnvn is a GEV with eigenvalue µ. Then either µ is distinct from all of the λi,
so {v1, . . . ,vn,u} is a linearly dependent set of GEVs with distinct eigenvalues; or µ
equals one of the λi (say, µ = λ1), so {u− c1v1,v2, . . . ,vn} is a linearly dependent set of
GEVs with distinct eigenvalues. By the previous corollary, both cases are impossible,
so u can’t be a GEV.

Corollary. The subspace sum of any number of generalized eigenspaces with all distinct eigen-
values is direct.

Proof. Like the analogous results for ordinary eigenspaces on page 92.

This result is a building block of an important, fundamental theorem: any finite-
dimensional vector space over C can be completely decomposed as a direct sum of
the maximal generalized eigenspaces of an arbitrary operator. (This is a more abstract
phrasing of a result that’s usually put in matrix language: the existence of a particular
matrix representation called Jordan normal form for any operator on Cn.)

We have one more proposition that will be useful for the next section:

Proposition. If V is the eigenspace of some operator T with eigenvalue λ, and W is a GES of
order n with eigenvalue λ, then dimW ≤ n dimV .

Proof. Since V = ker(T − λ) and W = ker(T − λ)n, the result follows from the formula
dimkerT n ≤ n dimkerT valid for any operator T , itself an immediate corollary of the
result dimker(T2T1) ≤ dimkerT1 +dimkerT2 for arbitrary linear maps T1, T2 proved on
page 83.
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3.8 Jordan bases of generalized eigenspaces

This section presents one important result: we can construct a basis for a maximal GES
of finite order that is made up entirely out of elements of chains. This result will be one
huge piece of a major theorem in matrix theory: the existence of a Jordan normal form
for every complex matrix.

First, some definitions. Throughout this section, V is a vector space, and T is an
operator on V such that every element of V is a GEV of T with the same eigenvalue
λ. (That is, V itself is a maximal generalized eigenspace.) For notational convenience,
write T ′ = T − λ. Call a set S ⊂ V chained if it satisfies the following properties:

1. For every element v ∈ S, either T ′v ∈ S or T ′v = 0.

2. There are no two distinct elements v1,v2 ∈ S such that T ′v1 = T ′v2 ̸= 0.

That is, we can organize the elements of S into a set of chains such that T ′ takes
each element to the next element in its chain (or 0), and the chains don’t merge until 0.
Call v ∈ S the predecessor of w ∈ S, and w the successor of v, if T ′v = w.

Finally, if S is a linearly independent chained set that is also a basis of V , then
we’ll call it a Jordan basis of V with respect to T . We can construct a Jordan basis for V
explicitly. The following lemma proves this in the finite-dimensional case:

Lemma. If V is finite-dimensional and every element of V is a generalized eigenvector of T
with the same eigenvalue λ, then there is a Jordan basis for V . Furthermore, any two Jordan
bases must have matching chain lengths: that is, for every integer k, the two bases must have
the same number of length-k chains.

Proof. Again, write T ′ = T − λ. Let h be the maximum order of any element of V , and
define the subspaces {0} = W0 ⊊ W1 ⊊ W2 ⊊ · · · ⊊ Wh = V as the maximal GESes of
order 0, 1, 2, . . . , h (that is, Wk = ker(T ′)k for all integers 0 ≤ k ≤ h). The dimensions
of the spaces Wi determine the chain lengths: there must be dimW1 chains in total
(because every chain contains exactly one element of order 1), dimW2 − dimW1 chains
of length at least 2 (because every such chain contains exactly one element of order 2),
dimW3−dimW2 chains of length at least 3, and so on. This observation shows that any
two chained bases must have chains with matching lengths.

So we need to show that at least one Jordan basis exists. Remember from page 55
that the basis for a direct sum can be assembled from the union of bases for the con-
stituent subspaces. We’ll construct one explicitly as the union of the bases B1, . . . , Bh

of a series of subspaces U1, . . . , Uh with the following properties:

1. Wi = Wi−1 ⊕ Ui for all integers 1 ≤ i ≤ h. This means that W1 = U1 and V =
Wh = U1 ⊕ · · · ⊕ Uh, so the union of bases for U1, . . . , Uh is in fact a basis for V .

2. If v ∈ B1, then T ′v = 0. (This follows from the fact that B1 is a basis of U1 = W1,
the set of all ordinary (i.e. order-1 generalized) eigenvectors.)

3. If v ∈ Bi for i ≥ 2, then T ′v ∈ Bi−1, and there is no other vector v′ ∈ Bi such that
T ′v = T ′v′. These two points establish that B1 ∪ · · · ∪Bh is in fact a chained set.

The Wi = Wi−1 ⊕Ui requirement means that Ui ∩Wi−1 = {0}; that is, every element
of Ui except for 0—and, in particular, every element of Bi—has order exactly i. We’ll
define Bi and Ui iteratively as follows:
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1. Take an arbitrary basis of Wh−1, and define Bh as any linearly independent set
of vectors that we can add to extend this basis to a basis of Wh = V . Define
Uh = spanBh.

2. For i = h − 1 down to i = 1, assume that we already have Bi+1 and Ui+1 =
spanBi+1 defined. Remember that every element of Bi+1 must have order i+ 1.

Define B′
i = {T ′v : v ∈ Bi+1}. So B′

i is a set of generalized eigenvectors of order i.
Furthermore, every linear combination c1T

′v1+· · ·+ckT
′vk = T ′(c1v1+· · ·+ckvk)

where at least one of the coefficients c1, . . . , cn is nonzero must have order exactly
i. (To see why, note that if the linear combination c1v1 + · · · + ckvk is nontrivial,
then it must be nonzero (because Bi+1 is linearly independent) and so it must
have order i + 1 (because the only element of Ui+1 = spanBi+1 that doesn’t have
order i+ 1 is 0), which means that T (c1v1 + · · ·+ ckvk) has order i.) In particular,
if c1T ′v1 + · · · + ckT

′vk has nonzero order i, then it can’t be 0, meaning that B′
i is

linearly independent and no two vectors in Bi+1 have the same successor in B′
i.

And as every element of spanB′
i has order i, furthermore, spanB′

i ∩Wi−1 = {0}.

Define U ′
i = spanB′

i. Extend B′
i arbitrarily to some basis C of U ′

i ⊕Wi−1 by adding
some basis of Wi−1, then let D be any set of basis vectors required to extend C to
a basis of Wi, and define Bi = B′

i ∪ D and Ui = spanBi. By construction, Ui and
Wi−1 are disjoint except at {0}. Each vector in D begins a new chain, and each
vector in B′

i continues a chain from Bi+1.

The union B = B1 ∪ · · · ∪ Bh is thus a basis for V , and we can rearrange it to put
chains together.

With a bit more work and notational complexity, we could generalize this theorem
to prove the existence of Jordan bases for maximal generalized eigenspaces of unspec-
ified order in infinite-dimensional vector spaces. (In this case, we may have an infinite
number of chains, and individual chains may have infinite length.) But we won’t need
the infinite-dimensional case for this book.

3.9 Application: linear recurrences and differential equa-
tions

Key questions.

1. What is the space FN? What is the left-shift operator L : FN → FN? How can we
translate the fact that a sequence satisfies the recurrence equation an+2 = an+an+1

into a statement involving an operator constructed from L?

2. What kind of subset of FN contains solutions to the recurrence an+2 = an + an+1 +
f(n), where f is some function on the integers with values in F?

3. What are the eigenvalues and corresponding eigenvectors of the left-shift opera-
tor L : FN → FN? What about the generalized eigenvectors?
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4. If A and B are two operators on the same space, then does ker(AB) always have
to contain kerA? Does it always have to contain kerB? Explain why or give a
counterexample. (Hint: consider the operators A(x, y) = (x, 0) and B(x, y) =
(y, x) on R2.) When can we conclude that kerA ⊆ ker(AB)?

5. (⋆) Suppose that T is a linear operator on a complex vector space that has 0, 1, and
2 as eigenvalues, all with one-dimensional eigenspaces. What are the possible
dimensions of ker(T 3 − 3T 2 + 2T )? What about ker(T 3 − 2T 2)?

6. (⋆) If A is any operator on a space and I is the identity operator, explain why
ker(A2 − I) contains both ker(A+ I) and ker(A− I). Can ker(A2 − I) contain any
elements outside ker(A+ I)⊕ ker(A− I)? Why or why not?

7. (⋆⋆) Explain why ker(A2−B2) may not contain ker(A+B) or ker(A−B) for general
operators A and B, despite the seeming algebraic identity A2−B2 = (A+B)(A−
B). (One counterexample is A(x, y) = (−y, x) [rotation counterclockwise by 90
degrees] and B(x, y) = (y, x) [reflection about y = x]; then (1, 0) and (0, 1) are
respectively in ker(A − B) and ker(A + B), but neither is in ker(A2 − B2).) Are
there conditions that you can impose on A and B to ensure that ker(A + B) ⊆
ker(A2 −B2) and ker(A−B) ⊆ ker(A2 −B2)?

8. If I is a real interval, what vector space does the notation C∞(I) denote? Why is
d
dx

a linear operator on this space? What are the eigenvalues and (generalized)
eigenvectors of d

dx
?

Our theory of linear operators may seem scant so far, but it’s enough for us to
solve two fundamental and closely analogous problems in discrete mathematics and
differential equations: general solutions of linear recurrences and linear homogeneous or-
dinary differential equations with constant coefficients. Linear recurrences are sequences of
integers defined by k arbitrary starting values and a recursive equation that gives all
subsequent values of the sequence as a linear combination with fixed coefficients of the
k preceding values. One well-known example is the Fibonacci sequence Fn, with the
starting values F0 = 0, F1 = 1 and the recurrence Fn+2 = Fn+Fn+1 for all integer n ≥ 0:
this sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21. Basic operator theory gives a method for
finding closed-form equations, without recursion, for all linear recurrences.

Linear homogeneous ODEs with constant coefficients, meanwhile, are differential

equations of the form cn
dny

dxn
+ cn−1

dn−1y

dxn−1
+ · · ·+ c0y = 0. Differential equations usually

have an infinite number of possible solutions: we can specify one solution by giving

the value of y,
dy

dx
, . . . ,

dn−1y

dxn−y
and its first n − 1 derivatives at some specific point x0 in

the domain. A similar method to the one we use to solve linear recurrences also gives
a solution for all such differential equations.

3.9.1 Solving the Fibonacci sequence

Before we develop the general theory of linear recurrences, we’ll look at one specific
example: finding a closed form for the Fibonacci sequence. A reminder of notation: FN

is the set of infinite sequences of elements of a field F, with vector addition defined as
(a0, a1, a2, . . .)+(b0, b1, b2, . . .) = (a0+ b0, a1+ b1, a2+ b2 . . .) and scalar multiplication de-
fined as k(a0, a1, a2, . . .) = (ka0, ka1, ka2, . . .). (It’s arbitrary whether we start sequence
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indices at 0, 1, or anything else.) The zero element of FN is, of course, 0 = (0, 0, 0, . . .).2

We’ll also denote scalar multiples kI of the identity operator just as k, with I itself
denoted as 1.

We’ll also define the left-shift operator L : FN → FN as L(a0, a1, a2, . . .) = (a1, a2, a3, . . .).
The squared operator L2 = L ◦ L shifts left by two places, L3 by three, and so on. It’s
easy to prove that L is linear, and its eigenvectors with eigenvalue λ are sequences for
which multiplying each element by λ is equivalent to replacing it with the element one
place to the right: that is, the geometric sequences of the form (k, kλ, kλ2, kλ3, . . .), for
some arbitrary k ∈ F. This also means that the eigenvectors with eigenvalue zero are
the ones with zeroes in every entry but the first. (L also has generalized eigenvectors
of order 2 and greater, but we’ll leave those aside for now.)

Now call a sequence of complex numbers3 (a0, a1, a2, . . .) ∈ CN Fibonacci-like if it
satisfies the Fibonacci recursion an+2 − an+1 − an = 0 for all integers n ≥ 0, but doesn’t
necessarily satisfy the Fibonacci initial condition a0 = 0, a1 = 1. We’re going to find a
general form for all Fibonacci-like sequences.

To start, note that we can reformulate the recurrence as a statement that the se-
quence (a2−a1−a0, a3−a2−a1, a4−a3−a2, . . . , an+2−an+1−an, . . .) is just (0, 0, 0, . . .) =
0CN . This sequence, meanwhile, is the image of the operator R := L2 −L− 1 applied to
(a0, a1, a2, . . .), so the Fibonacci-like sequences are the kernel of the operator R. (We’ll
use the letter R to suggest “recurrence”; don’t get it confused with “right-shift.”)

Now the key step: since operators on CN form an associative algebra over C with
function composition taking the role of multiplication (remember section 3.5), we can
factor R as either R = (L − ϕ+)(L − ϕ−) or R = (L − ϕ−)(L − ϕ+), where ϕ+ = 1+

√
5

2

and ϕ− = 1−
√
5

2
are the roots of the polynomial x2 − x − 1. (Remember that L, like any

operator, commutes with multiples and powers of itself and with multiples of I .) Since
ker(T2T1) has to contain kerT1 for any pair of operators T1, T2 (because T1v = 0 implies
(T2T1)v = T2(T1v) = T20 = 0 for any v), so kerR must contain both ker(L − ϕ−) and
ker(L+ ϕ+), which are both one-dimensional eigenspaces of T . So R must also contain
the sum of these eigenspaces, which has dimension 2 because the sum of eigenspaces
with different eigenvalues is direct.

Note that ker(L − ϕ−) ⊕ ker(L − ϕ+) is the set of linear combinations of the eigen-
vectors (1, ϕ−, ϕ

2
−, . . .) (which is a basis for the one-dimensional subspace ker(L−ϕ−I))

and (1, ϕ+, ϕ
2
+, . . .) (which is a basis for ker(L−ϕ+)). That is, ker(L−ϕ−)⊕ker(L−ϕ+I)

is the set of sequences with the general form (k1 + k2, k1ϕ− + k2ϕ+, k1ϕ
2
− + k2ϕ

2
+, . . .) for

arbitrary constants k1, k2 ∈ C.
We claim, finally, that ker(L − ϕ−) ⊕ ker(L − ϕ+) is in fact all of kerR. This follows

from a simple dimensionality argument: since R is the composition (L − ϕ−)(L − ϕ+)
of two maps whose kernels have dimension 1, dimkerR can be at most 2 (see page 83).

So every Fibonacci-like sequence has the form (k1+k2, k1ϕ−+k2ϕ+, k1ϕ
2
−+k2ϕ

2
+, . . .).

We can find values of k1 and k2 that generate the actual Fibonacci sequence by using
the initial values F0 = 0, F1 = 1 and solving the system k1 + k2 = 0, k1ϕ− + k2ϕ+ = 1
with standard linear system methods (the solution is k1 = − 1√

5
and k2 = 1√

5
). So the

2Don’t confuse FN with its subset F∞, which is the set of infinite sequences with only a finite number
of nonzero terms.

3You may wonder why we’re working with the complex numbers when the Fibonacci sequence con-
tains only integers. The answer is that polynomial factoring, which is a key part of our method, is
simpler in the complex numbers thanks to the existence of the Fundamental Theorem of Algebra.
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Fibonacci sequence has the closed form

f(n) =
1√
5

(1 +
√
5)n − (1−

√
5)n

2n
.

.
If you want a closed form for a sequence with different starting numbers but the

same recurrence (say, the Lucas numbers 2, 1, 3, 4, 7, 11, 18, . . .) you would just need to
use the starting numbers to compute different values of k1, k2.

3.9.2 Solving general linear recurrences

The method that we used for the Fibonacci sequence generalizes to all linear recur-
rences: write the operator R : CN → CN as a factored polynomial of the left-shift
operator L. This polynomial is sometimes called the ”characteristic polynomial” of the
recurrence; note that it will never have a constant term (or, therefore, root) of zero. If
L has no repeated roots (a slight complication that we’ll get to later), then each factor
contributes one dimension to kerR, and a dimensionality argument shows that the re-
sult is the entirety of kerR. This procedure gives a general form for every sequence
that satisfies the recurrence, and any set of initial values of the sequence give a system
that can be solved to give values for the constants in this general form.

As another example (which also shows us why working with complex numbers
is useful, even for real-valued sequences), let’s solve the recurrence xn+3 = xn+2 −
4xn+1 + 4xn with initial condition x0 = x2 = 1, x1 = 0. Sequences that satisfy this
recurrence are in the kernel of the operator R = L3 − L2 + 4L2 − 4, which factors as
(L+2i)(L−2i)(L−1). Now, kerR must contain ker(L+2i)⊕ker(L−2i)⊕ker(L−1), which
is the three-dimensional set of sequences with general term an = k1(2i)

n+k2(−2i)n+k3.
But since R is the composition of three maps with one-dimensional kernels, kerR can
have dimension at most 3, so kerR = ker(L+ 2i)⊕ ker(L− 2i)⊕ ker(L− 1). Using the
initial conditions to solve for the coefficients k1, k2, k3 gives the system

k1 + k2 + k3 = 1

2ik1 − 2ik2 + k3 = 0

−4k1 − 4k2 + k3 = 1

with solution (k1, k2, k3) = (i/4,−i/4, 1). By noting that the value of in− (−i)n depends
only on the residue of n modulo 4, you can write the general form without complex
numbers:

xn =


1 n even
−2n−1 + 1 n ≡ 1 mod 4

2n−1 + 1 n ≡ 3 mod 4

(Alternatively, you could partially factor R = (L2 + 4)(L− 1) and note directly that
ker(L2 + 4) is the set of sequences of the form (a, b,−4a,−4b, 16a, 16b,−64a,−64b, . . .).)

The only wrinkle in our general method comes when the characteristic equation has
repeated roots, as (for example) in the recursion xn+2 = 4xn+1 − 4xn, whose solutions
are in the kernel of R = L2−4L+4 = (L−2)2. In this case, kerR is the set of generalized
eigenvectors of L with order 2, a subspace of CN with dimension at most 2 (see page
100).
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The dimension of ker(L − λ)2 is indeed 2 for any constant λ; in fact, we can find
a basis for it. For λ ̸= 0, we could choose the eigenvector (1, λ, λ2, λ3, . . .) and the
GEV of order 2 (0, λ, 2λ2, 3λ3, . . .) to be a basis for ker(L − λ)2. You can check that
(L − λ)(0, λ, 2λ2, 3λ3, . . .) = (λ, λ2, λ3, . . .) and so (L − λ)2(0, λ, 2λ2, 3λ3, . . .) = 0. So
solutions to xn+2 = 4xn−1− 4xn have the general form xn = (k1n+ k2)2

n. (If λ = 0, then
kerL2 is the set of sequences with all zeros except possibly in the first two entries, but
characteristic equations of linear recurrences never have 0 as a root.)

In general, ker(L − λ)n for λ ̸= 0 is an n-dimensional space whose elements have
the general form

(p(0), p(1)λ, p(2)λ2, p(3)λ3, . . .)

where p is any polynomial of degree at most n − 1. You can prove this inductively:
applying L− λ once to (p(0), p(1)λ, p(2)λ2, p(3)λ3, . . .) gives

((p(1)− p(0))λ, (p(2)− p(1))λ2, (p(3)− p(2))λ3, . . .)

and this sequence is in ker(L − λ)n−1 because p(x + 1) − p(x) is a polynomial whose
degree is one below the degree of p itself.

3.9.3 Linear recurrences with a term dependent on the index

We now know how to solve sequence in which each term after the initial conditions
is a linear combination of the previous terms. Now let’s consider a generalization:
what if each term is a linear combination of the previous terms, plus a function of the
index? As an example, let’s define the Bifonacci sequence4 (b0, b1, b2, . . .) with the initial
conditions b0 = 0, b1 = 1, and then the recurrence bn+2 = bn + bn+1 + 2n. The Bifonacci
sequence starts b0 = 0, b1 = 1, b2 = 0 + 1 + (2 × 0) = 1, b3 = 1 + 1 + (2 × 1) = 4, b4 =
1 + 4 + (2× 2) = 9, b5 = 4 + 9 + (2× 3) = 19, . . ..

The 2n term in the recursion prevents us from using our method for linear recur-
rences unmodified, but a few observations can turn much of the problem into a linear
recurrence problem in disguise. First, let’s call a sequence (b0, b1, b2, . . .) Bifonacci-like if
it satisfies the recurrence bn+2 = bn + bn+1 + 2n but doesn’t necessarily have 0 and 1 as
initial values. Note two facts about Bifonacci-like sequences.

1. Suppose b0, b1, . . . and b′0, b
′
1, . . . are both Bifonacci-like, and define an = b′n − bn.

Then subtracting the recurrence equation bn+2 = bn+bn+1+2n from the recurrence
equation b′n+2 = b′n + b′n+1 + 2n gives the equation a′n+2 = a′n + a′n+1, which is
the Fibonacci recurrence. That is, the difference between any two Bifonacci-like
sequences is a Fibonacci-like sequence—that is, an element of ker(L2 − L − I).
This means that the Bifonacci-like sequences must all be contained in one coset
of ker(L2 − L− I).

2. In fact, the Bifonacci-like sequences are an entire coset of ker(L2 −L− I), because
we can reformulate the Bifonacci recurrence directly as (L2−L−I)(b0, b1, b2, . . .) =
(0, 2, 4, 6, . . . , 2n, . . .). That is, the Bifonacci-like sequences are the preimage of
the single vector (0, 2, 4, 6, . . . , 2n, . . .) under L2 − L − I , and in section 2.7.2, we
showed that preimages of single vectors are cosets of the kernel.

4Not a standard term!
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So the Bifonacci-like sequences are a coset of the Fibonacci-like sequences; that is,
we can write any Bifonacci-like sequence as bn = cn + k1ϕ

n
− + k2ϕ

n
+, where k1ϕ

n
− +

k2ϕ
n
+ is a general solution for Fibonacci-like sequences, and (c0, c1, c2, . . .) is an arbitrary

Bifonacci-like sequence that we can use as a base point for the coset. For most linear
recurrences with an additional index-dependent term, finding a base point is difficult
if not impossible. But the Bifonacci recurrence equation is one of the few with a nice
formula for the base point: you can check that (−2,−4,−6, . . . ,−2n−2, . . .) is Bifonacci-
like, so a general formula for Bifonacci-like sequences is bn = k1ϕ

n
− + k2ϕ

n
+ − 2n− 2.

If you want to find the values of k1, k2 that give the Bifonacci sequence with initial
conditions b0 = 0, b1 = 1, you can substitute n = bn = 0 and n = bn = 1 into the
equation to get the linear system 0 = k1 + k2 − 2 and 1 = k1ϕ− + k2ϕ+ − 4 (which you
can solve routinely to get the values k1 = 1 −

√
5 and k2 = 1 +

√
5). So the Bifonacci

sequence has the closed form

bn =
(1−

√
5)n+1

2n
+

(1 +
√
5)n+1

2n
− 2n− 2.

We can generalize this approach to any linear recurrence of the form bn+k = c0bn +
· · ·+ ck−1bn+k−1+ f(n), where f is some arbitrary function. First, solve the correspond-
ing linear recurrence without an index-dependent term an+k = c0an + · · ·+ ck−1an+k−1.
Second, find at least one solution (b0, b1, . . .) to the original recurrence with the f(n)
term to use a base point. Not all functions f lead to a base point (b0, b1, . . .) with a nice
formula, but if you can find only one such sequence, you know that all the other solu-
tions can be obtained by adding (b0, b1, . . .) to a solution to an+k = c0an+· · ·+ck−1an+k−1.

3.9.4 Linear homogeneous ODEs with constant coefficients

First, some notation: if I is an interval on the real line, let’s denote the set of continuous
complex-valued functions on I by C0(I). This is a vector space over C if we define
addition of two functions f and g as the function x 7→ f(x) + g(x) (which must be
continuous if f and g are both continuous), multiplication of f by a scalar k ∈ C by the
function x 7→ kf(x) (which is also continuous if k is continuous), and the zero vector
as the function that takes every input to 0.

The set of complex-value functions on I whose nth derivative exists and is contin-
uous is denoted Cn(I). The set of functions with derivatives of every positive order
(typically called “smooth” functions), finally, is C∞(I).

Denote by D the differential map that takes every function f to its derivative f ′.
This is a linear map from Cn(I) to Cn−1(I) (linear because d

dx
(af(x) + bg(x)) = af ′(x) +

bg′(x)), and it’s a linear operator on C∞(I), the space of functions with an infinite num-
ber of complex derivatives.

The idea behind our solution method for linear homogeneous ODEs with constant
coefficients is virtually identical to our idea for linear recurrences, with D taking the
role of L: recast a differential equation(

dn

dxn
+ cn−1

dn−1

dxn−1
+ · · ·+ c1

d

dx
+ c0

)
f(x) = 0

as a statement about the kernel of a polynomial of D:

f ∈ ker(Dn + cn−1D
n−1 + · · ·+ c1D + c0).
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(Differential equations textbooks call this the “characteristic polynomial” of the equa-
tion.) This rewrite presupposes that f is a smooth function (because the only version
of D that we can technically compose with itself is the operator on the space of smooth
functions C∞(I)), but it turns out that linear homogeneous ODEs with constant coeffi-
cients don’t have non-smooth solutions.5

We can factor this operator in the form (D−λ1)
n1 · · · (D−λk)

nk , where the (possibly
complex) eigenvalues λ1, . . . , λk are all distinct and the exponents n1 + · · · + nk = n.
This shows that the space of functions f in the kernel of this operator is the direct sum
of generalized eigenspaces ker(D − λ1)

n1 ⊕ · · · ⊕ ker(D − λk)
nk .

• The eigenfunctions6 of D with value λ (i.e. the elements of ker(D−λ) are solutions
y = f(x) to dy

dx
= λy, which you can solve with standard calculus methods to get

f(x) = keλx. (For λ = 0, these functions are just the constant functions f(x) = k).

This is a one-dimensional eigenspace; the constant k is determined by a single
initial condition, such as the value of f(x0) for some special point x0. You may
wonder if there might be more exotic solutions that we’ve missed, but a general
theorem in differential equations (which we won’t cover here) that says that a
first-degree differential equation with a single specified initial value can have
only one solution.

• The generalized eigenfunctions of D with value λ and order n have the gen-
eral form f(x) = p(x)eλx, where p is an arbitrary polynomial of degree at most
n − 1. This is an n-dimensional subspace of C∞(I). The nonexistence of any ad-
ditional generalized eigenfunctions follows either from more general uniqueness
theorems for differential equation solutions, or from the bound on generalized
eigenspace dimensions dimker(T − λ)n ≤ n dimker(T − λ) from page 100.

So the general form of an element of the kernel (D − λ1)
n1 · · · (D − λk)

nk is

f(x) = p1(x)e
λ1x + · · ·+ pk(x)e

λkx

where pi is a polynomial of degree at most ni − 1. Finding a specific function that
satisfies initial conditions requires using the initial conditions to solve for the n total
coefficients in the polynomials p1, . . . , pk

Let’s look at an example from physics: the damped harmonic oscillator. This is
an oscillating object attached to an idealized spring that can move in one dimension,
with an equilibrium position at 0. The object feels two forces: first, a restoring force
from the spring pulling it back to equilibrium (and proportional to its distance from

5The solution to
(

dn

dxn + cn−1
dn−1

dxn−1 + · · ·+ c1
d
dx + c0

)
f(x) = 0 must have n derivatives defined,

and if f has n derivatives, then the first n − 1 derivatives must be continuous (because any dif-
ferentiable function must also be continuous). We can also rearrange the differential equation as
f (n)(x) = −cn−1f

(n−1)(x) − · · · − c1f
′(x) − c0f(x) where f (k)(x) means dk

dxk f(x); since the right-
hand side of this equation is a sum of continuous and differentiable functions, the left-hand side
f (n)(x) must be continuous and differentiable as well. Differentiating both sides of this equation gives
f (n+1)(x) = −cn−1

dn−1

dxn−1 f
(n)(x) − · · · − c1f

′(x) − c0f(x), which shows that f (n+1) is a sum of differ-
entiable functions, so it must also exist and be differentiable. Differentiating again gives an expression
for f (n+2) as a sum of multiples of the continuous functions f ′′, . . . , f (n+1), so f (n+2) also exists and is
differentiable; and so on.

6This is the word typically used instead of “eigenvectors” when the context is operators on function
spaces such as C∞(I).
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equilibrium); and second, a friction force proportional to, and in the opposite direction
from, its velocity. Its acceleration is the sum of these forces divided by the object’s
mass; that is, if y(t) is the object’s position at time t, then y′′(t) = −αy′(t)−βy(t), where
α > 0 gives the relative strength of the friction force compared to the object’s mass, and
β > 0 gives the strength of the restoring force. We can rearrange this equation as

y′′(t) + αy′(t) + βy(t) = 0

with general solution y ∈ ker(D2 + αD + β) = ker(D − λ−)(D − λ+), where λ− =

−α−
√
α2 − 4β

2
and λ+ = −α−

√
α2 − 4β

2
are the roots of the characteristic equation

x2 + αx+ β = 0.
The damped oscillator has qualitatively different behavior depending on the sign

of the discriminant α2 − 4β of the characteristic equation. There are three cases:

1. Restoring force dominates: α2 − 4β < 0. In this case, λ+ and λ− are complex con-
jugates with real part −α/2 and complex part ±ω, where ω :=

√
α2 − 4β/2. The

general solution is y(t) = k1e
(−α/2+ωi)t+k2e

(−α/2−ωi)t = e−αt/2(k1e
ωit+k2e

−ωit). This
describes an object that oscillates with angular frequency ω, with the amplitude
of the oscillations decaying exponentially as e−αt/2. This is called underdamping.

2. Balanced friction and restoring force: α2−4β = 0. In this case, λ− = λ+ = −α
2

, and
ker(D−λ−)(D−λ+) = ker(D+ α

2
)2 contains generalized eigenvectors. The general

solution is y(t) = (k1t + k2)e
−αt/2. So the object will not oscillate: if it’s given

an initial push in one direction (making a large value of k1), it may overshoot
equilibrium, but it will eventually decay to equilibrium roughly exponentially at
a rate given by e−αt/2. This is called critical damping.

3. Friction force dominates: α2−4β > 0. The general solution is again y(t) = k1e
λ−t+

k2e
λ+t, but this time, λ− and λ+ are both real, with −α

2
< λ+ < 0. The object will

return without oscillating to the equilibrium position, but because friction is so
strong, its return is slower than in critical damping, being given roughly by eλ+t.
This scenario is called overdamping.

3.9.5 Linear inhomogeneous ODEs

A linear inhomogeneous ODE with constant coefficients is a differential equation of
the form (

dn

dxn
+ cn−1

dn−1

dxn−1
+ · · ·+ c1

d

dx
+ c0

)
f(x) = a(x)

where a(x) is a given function of x—analogous to linear recurrences that include a
term f(n). These are generally much harder to solve than linear homogeneous ODEs,
but one crucial observation (again, analogous to an observation that we made in de-
veloping our theory of linear recurrences) lets us solve many of them. Let’s write
∆ = Dn + cn−1D

n−1 + · · · + c1D + c0. Then the differential equation may be written
more simply ∆f = a: that is, the set of solutions f is D−1({a}), the preimage of a single
vector—that is, it’s a coset of ker∆. So we can find a single solution f0 to ∆f = a, then
the general solution is just f ∈ f0 + ker∆: that is, f0 plus any solution to the associ-
ated, mechanically solvable homogeneous equation ∆f = 0. One common method for
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finding f0 involves making an Ansatz—a guess at a form for a possible solution, with
unknown parameters, that satisfies the differential equation but not necessarily the ini-
tial conditions—and then using the differential equation to solve for these parameters.

This is not a book on differential equations, so we won’t go into too much de-
tail; let’s just look at one other familiar physics example: the damped and driven har-
monic oscillator, with friction and restoration forces as well as an external driving force
F sin(ωt). The equation of motion for this oscillator is

y′′(t) + αy′(t) + y(t) = F sin(ωt).

To solve this, you might guess that the object should follow the driving force (pos-
sibly with some phase lag) and use the Ansatz y0(t) = A sin(ω − ϕ).

The resulting details are boring, but in essence: substituting this equation into
y′′0(t) + αy′0(t) + y0(t) = F sin(ωt), and using the fact that derivatives and sums of si-
nusoids are sinusoids with the same frequency,7 gives a system to find (complicated)
expressions for A and ϕ in terms of F, ω, α, β. Moreover, the general solution to the dif-
ferential equation is y0 plus a solution to y′′(t) + αy′(t) + y(t) = 0, the equation for the
damped and undriven oscillator, and we’ve already seen that every solution for the
undriven oscillator decays to zero as t increases. So in the t → ∞ limit, every possi-
ble trajectory of the damped and driven oscillator approaches the special solution y0,
regardless of initial conditions.

7Remember that A sin(ωt + ϕ) = ℜ(Aeiωt+iϕ) where ℜ denotes the real part, so A1 sin(ωt + ϕ1) +
A2 sin(ωt + ϕ(2) = ℜ((A1e

iϕ1 + A2e
iϕ2)eiωt); in physics or engineering classes, you may have learned

a graphical method called phasor algebra that turns addition of sinusoids with the same frequency, but
different amplitudes A and phases ϕ, into addition of the vectors (A cosϕ,A sinϕ).



Chapter 4

Matrices and linear systems

Key questions.

1. Define the following terms: matrix, column vector, row vector, row space, column
space.

2. What is the notation for the set of matrices with 3 rows, 4 columns, and rational
entries? (Remember: the field of rational numbers is denoted Q.) What opera-
tions make this into a vector space over Q?

4.1 Definitions

We’ve built a tower of abstraction in the last three chapters, and now is the time for
our reward: from our high vantage point, we find that much of the theory of matri-
ces becomes almost trivial. For most of the rest of the book, we’ll consider at finite-
dimensional vector spaces over R and C, though our theory for infinite-dimensional
spaces will be useful sometimes.

Some preliminary notation. A matrix is a rectangular block of numbers. Matrix
dimensions are listed as rows first, then columns second: for instance, a “two-by-three”
or 2×3 matrix has two rows and three columns. In a bit, we’ll see why this convention
is arguably backwards, but we’re all stuck with it now.

We’ll write Matr×c(F) for the set of matrices with r rows and c columns with entries
in the field F. For instance, one element of Mat2×3(C) is[

4 + 2i
√
17 + π2i −5

2i 3− 0.17i 0

]
.

Matrix rows are numbered starting with 1 at the top, and columns are numbered
starting from 1 at the left, so (for example) 2i in the above matrix is in row 2 and
column 1. The elements with equal row and column numbers—that is, the elements in
a diagonal that descends from top left toward lower right—are the diagonal. (So in the
above example, the diagonal entries are 4+ 2i and 3− 0.17i.) A matrix that has all zero
entries off the diagonal is called, naturally enough, a diagonal matrix.

You can make Matr×c(F) into a vector space in the natural way: matrices with the
same size can be added by adding corresponding elements, and scalar multiplication
works by multiplying every individual matrix element by the scalar, as in the following

111
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formula for 2× 2 matrices:

k1

[
a1 b1
c1 d1

]
+ k2

[
a2 b2
c2 d2

]
=

[
k1a1 + k2a2 k1b1 + k2b2
k1c1 + k2c2 k1d1 + k2d2

]
There’s a natural choice of rc basis elements for Matr×c(F): choose one of the rc

entries of the matrix to be 1 and set all the others to 0.
Matrices with the same number of rows and columns are called, naturally enough,

square.
One important subclass of matrices is Matn×1(F), matrices with n rows but only one

column. These are called column vectors. In this book, we’ll denote these as Coln(F) (this

isn’t standard notation). One element of Col3(R), for instance, is

 1 + 5
√
11

π1000 arctan(
√
10− 1)

−0.000001

.

Coln(F) is, of course, an n-dimensional vector space over n, and some books actually
define Fn to be what we’re calling Coln(F). It will make things clearer, though, if you
keep these two concepts separate and think of elements of Fn just as an ordered list
of n numbers without any matrix structure. Usually Fn is the vector space that we
want to work over, and Coln(F) is used for a matrix representation of elements in Fn.
Keeping spaces and their representations conceptually separate will help you avoid a
lot of confusions, especially since a lot of matrix theory involves translating between
different representations of the same space. (Soon, we’ll explain precisely what we
mean by “representation.”)

Symmetrically, row vectors are the set of matrices with 1 row and an arbitrary num-
ber of columns—sort of a symmetrical counterpart of column vectors. We’ll denote the
set of row vectors with n entries in a field F as Mat1×n(F) or as Rown(F).

One final bit of shorthand: we’ll say the element in “position (r, c)” of a matrix to
mean the element in row r and column c.

4.2 Matrix multiplication

Key questions.

1. How is matrix multiplication defined? Compute the product
[
0 1
2 3

] [
5 4 3
2 1 0

]
.

2. Suppose A is a 3 × 4 matrix. What matrix dimensions can B have if the matrix
product AB is defined? What dimensions can it have if the products AB and BA
are both defined?

3. Consider the set of n×n matrices for some integer n ≥ 2, other than the zero ma-
trix, together with the operation of multiplication (and ignoring all other matrix
operations). Which abelian group axioms does this structure satisfy? Which does
it not satisfy?

4. (⋆) Does
[
0 1
2 3

]
have an inverse? How about

[
0 1
0 3

]
? How about

 0 1 2
10 11 12
20 21 22

?

5. What are the standard basis column vectors? If ei is the ith standard basis column
vector of Colc(F) and M is an r × c matrix, then what is Mei?
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6. What does it mean that in the matrix product AB, A “acts on B by rows” and B

“acts on A by columns”? If A =

[
1 3 −1
−2 0 4

]
, then how are the rows of the matrix

product AB related to the rows of B (assuming B has compatible dimensions)?
How are the columns of BA related to the columns of B?

4.2.1 Definitions

There’s one final operation possible between pairs of matrices: matrix multiplication.
In high school mathematics, you may have learned the algorithm for matrix multipli-
cation (though probably not what it’s actually useful for). But as a review (or if you
haven’t learned it) the matrix product AB is only defined between matrices with com-
patible dimensions. A must have dimensions m×n and B has dimensions n×p: that is,
A has exactly as many columns as B has rows. The entry in position (r, c) of the matrix
product AB is the dot product of row r of A and column c of B—that is, calculate the
products of entries in corresponding positions in row r of A (starting from the left) and
column c of B (starting from the top), then add all these products.

For instance, the product of a 3× 4 matrix and a 4× 2 matrix is a 3× 2 matrix. The
general formula for multipling matrices with these dimensions is

a b c d
e f g h
i j k ℓ



s t
u v
w x
y z

 =

as+ bu+ cw + dy at+ bv + cx+ dz
es+ fu+ gw + hy et+ fv + gx+ hz
is+ ju+ kw + ℓy it+ jv + kx+ ℓz



4.2.2 Square matrices form an associative algebra

Any two square matrices with the same dimensions can be multiplied by each other in
either order. So matrix multiplication makes the space of square matrices Matn×n(F)
become not just a vector space but also an algebra over F in the sense that we discussed
in section 3.5—it’s straightforward (though a bit tedious) to show that matrix multipli-
cation also distributes over matrix addition and is compatible with scalar multiplica-
tion. In fact, the algebra is also unital, because it has a multiplicative identity given by
the identity matrix with entries of 1 on the diagonal and 0 elsewhere. (The 3×3 identity

matrix, for instance, is

1 0 0
0 1 0
0 0 1

.) It’s also an associative algebra: (AB)C = A(BC)

for any square matrices A,B,C—in fact, associativity of multiplication holds for any
matrices with appropriate dimensions. The proof is straightforward and not very in-
teresting:

Proposition. Matrix multiplication is associative.

Proof. Let A,B,C be matrices with respective dimensions m × n, n × p, and p × q and entries in the
same field. Denote the entry in row i and column j of A as aij (and similarly for B and C). Let αij =∑n

k=1 aikbkj and βij =
∑p

k=1 bikckj designate the entry in row i and column j of AB (which has size
m× p) and BC (which has size n× q).
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Pick some k, ℓ, where 1 ≤ k ≤ m and 1 ≤ ℓ ≤ q. Then the entry in row k and column ℓ of (AB)C is

p∑
i=1

αkiciℓ =

p∑
i=1

 n∑
j=1

akjbji

 ciℓ


=

p∑
i=1

n∑
j=1

akjbjiciℓ

while the entry in row k and column ℓ of A(BC) is

n∑
j=1

akjβjℓ =

n∑
j=1

[
akj

(
p∑

i=1

bjiciℓ

)]

=

n∑
j=1

p∑
i=1

akjbjiciℓ

and these sums are evidently equal (it doesn’t matter if the sum over i or the sum over j comes first,
because we can swap finite sums without a problem).

Importantly, matrix multiplication is not commutative: AB is not necessarily equal
to BA. For one, BA is not even defined, even if AB is defined, if A has a different
number of rows from B’s number of columns. Even if both products are defined—that
is, A has dimension m × n and B has dimension n ×m—then AB is an m ×m matrix
and BA is an n× n matrix, and these can’t possibly be equal unless m = n.

And even if A and B are square matrices of the same dimension, AB is not guaran-
teed to equal BA—in fact, AB = BA only if A and B satisfy some specific conditions
that we’ll discuss later. Here’s a simple example of noncommutative square matrices:[

0 −1
1 0

] [
2 0
0 1

]
=

[
0 −1
2 0

]
[
2 0
0 1

] [
0 −1
1 0

]
=

[
0 −2
1 0

]

4.2.3 Matrices as maps on column vectors

Every r × c matrix M defines a map from Colc(F) to Colr(F) that sends the c-entry col-
umn vector c to the matrix product (and r-entry column vector) Mc. Let’s temporarily
denote this map TM : Colc(F) → Colr(F). (It may seem pedantic to insist that matrices
and the multiplication maps that they produce are different objects, but this will help
with conceptual clarity.)

This map TM must be linear, since matrix-by-column-vector multiplication (which
is just a subclass of matrix-by-matrix multiplication) distributes over matrix addition
and is compatible with scalar-by-matrix multiplication: that is, M(c1+c2) = Mc1+Mc2
and M(kc) = kMc. And conversely, from dimensional considerations, every linear
map Colc(F) → Colr(F) must be multiplication by some element of Matr×c(F). (Re-
member our remarks in Section 2.3 that the space of linear maps from a c-dimensional
space such as Colc(F) to an r-dimensional space such as Colr(F) has dimension cr, the
same as the dimension of Matr×c(F) as a vector space.) This is worth making a con-
spicuous proposition:
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Proposition. Every linear map from Colc(F) to Colr(F) is the multiplication map c 7→ Mc,
where M is some matrix in Matr×c(F).

Proof. Just given.

In fact, given any map T : Colc(F) → Colr(F), you can find the matrix M ∈ Mr×c(F)
such that T = TM if you know the value of T on the standard basis vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1


with a single entry of 1 and other entries of zero. For any r × c matrix M , the matrix
product Mei (as you can check for yourself) is the ith column of M , so the matrix M
such that TM = T must have Te1, . . . , Tec as column vectors. This fact is also worth
proposition status:

Proposition. Column i of a matrix M ∈ Matr×c(F) is the image of ei ∈ Colc(F) under the
multiplication map Colc(F) → Colr(F) that M produces.

Proof. Just given.

Since {e1, . . . , ec} is a spanning set of the domain of any map T : Colc(F) → Colr(F),
so {Te1, . . . , Tec} must be a spanning set of the image of T . This gives us another
important result.

Corollary. The image of the multiplication map created by a matrix M is the span of M ’s
columns.

4.2.4 Matrix multiplication is map composition

The associativity of matrix multiplication (AB)C = A(BC) also applies when C is a
column vector c, in which case (AB)c = A(Bc). This fact implies an extremely im-
portant result: multiplying matrices is equivalent to composing their multiplication maps on
column vectors: that is, TAB = TA ◦ TB. To see this, note that (AB)c means applying TAB

to c, while A(Bc) means first applying TB to c and then applying TA to the resulting
column vector.

The correspondence between matrix multiplication and composition of maps ex-
tends, in fact, from maps on column vectors to maps on any more abstract space that
we’re using column vectors to represent. We’ll talk more about this later.

4.2.5 Null, row, and column spaces

Finally, now that we’ve seen examples of multiplication of matrices by columns, we
can define a few special spaces associated with a matrix:
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1. The nullspace or null space of an r × c matrix A with entries in a field F, which
we’ll denote nullspA, is the subset of Colc(F) containing all the column vectors c

such that Ac =

0...
0

. This definition should remind you strongly of the definition

for the kernel of a linear map, and indeed, some books use the same terminology
and notation (either “kernel” or “nullspace”) for both matrices and linear maps.
But in the interest of keeping a clean conceptual line between linear maps and
their matrix representations, we’ll use “kernel” for linear maps and “nullspace”
for matrices.

2. The columnspace or column space of A, which we’ll denote colspA, is the subspace
of Colr(F) spanned by the columns of A. The maximum possible dimension of
this space is min(r, c), because it’s the span of c elements of the r-dimensional

space Colr(F). For instance, the column space of the real matrix
[
2 1 5
0 4 −2

]
is

span

{[
2
0

]
,

[
1
4

]
,

[
5
−2

]}
, which it’s not hard to prove is all of Col2(R) (because

any subspace of Col2(R) can have dimension at most 2, and the column space
of this particular matrix can’t have dimension 1 because its columns are not all
scalar multiples of each other).

As we discussed at the end of section 4.2.3, the column space of A is also the
image of the multiplication map that it creates from Colc(F) to Colr(F): there is a
solution x to the matrix equation Ax = b if and only if b ∈ colspA.

3. The rowspace or row space of A, which we’ll denote rowspA, is the subspace of
Rowc(F) spanned by the rows of A. The rowspace isn’t generally as useful as
the other two spaces, and it also doesn’t have an easy-to-see equivalent in the
language of abstract linear maps. But we will occasionally need to discuss it.

4. The rank of a matrix is the dimension of its column space. If the rank of an r × c
matrix is min(r, c) (that is, the largest rank that any r × c matrix could possibly
have), then we say that it has full rank.

It turns out the rank of a matrix is also the dimension of its row space: that is,
every matrix’s row and column spaces have the same dimension. This is not at
all an obvious claim, and we’ll have to prove it later in the chapter.

Since multiplication by an r × c matrix gives a map from Colc(F) to Colr(F) whose
kernel is the matrix’s nullspace and whose image is the matrix’s column space, we
have:

Proposition (Rank–nullity theorem for matrices). If M is an r×c matrix, then dimnullspM+
dim colspM = c.

Proof. Immediate corollary of the rank–nullity theorem for maps.
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4.2.6 Inverse matrices

The multiplication map created by a square n× n matrix M is an operator on Coln(F).
The image of this operator is colspM , so the operator is bijective if and only if the
columns of M are linearly independent (that is, if dim colspM = n).

If M has linearly independent columns, then the multiplication operator must have
an inverse operator which is also necessarily linear (as the inverse of any linear map
is linear: section 2.8) and thus must also be multiplication by some other matrix that
we’ll denote M−1. The product of M and M−1, in either order, must be the matrix
whose multiplication operator on Coln(F) is the identity operator (i.e. the composition
of any multiplication map and its inverse). This matrix is the identity matrix

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


These observations don’t yet give us a practical way to compute M−1 given M , but
we’ll soon see multiple methods for computing matrix inverses.

4.2.7 Matrix multiplication as modification of rows and columns

It’s often useful to consider matrix multiplication as a way in which each matrix op-
erates on entire rows or columns of the other, specifying the coefficients of a linear
combination that produces each row or column of the result matrix. To be more pre-
cise, consider the matrix product AB. Then:

1. Each row of AB is a linear combination of the rows of B, with coefficients speci-
fied by the corresponding row of A.

2. Each column of AB is a linear combination of the columns of A, with coefficients
specified by the corresponding column of B.

Mathematicians sometimes summarize this by saying that in the matrix product
AB, A “acts on B by rows” while B “acts on A by columns.” As an example, consider
the matrix product

AB =

[
1 3
−4 2

] [
2 3
30 50

]
=

[
92 153
52 88

]
.

We can look at this product in two ways:

1. The top row of AB, namely (92, 153), equals the top row of B plus three times
the bottom row. The bottom row of the product, (52, 88), equals −4 times the
top row of B plus 2 times the bottom row. These coefficients are given in the
corresponding rows of A.

2. The left column of AB, namely (92, 52), equals 2 times the left column of A plus
30 times the right column. The right column of AB, namely (153, 88), equals 3
times the left column of A plus 50 times the right column. These coefficients are
given in the coresponding columns of B.
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This perspective is especially useful for permutation matrices, which contain all zeros
except for an entry of 1 in each row and column—for example,

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0


Multiplying any matrix A on the left by a permutation matrix P rearranges the columns:
if P has an entry of 1 in row i and column j, then row j of A becomes row i of PA. Mul-
tiplying on the right, though, rearranges the columns: column i of A becomes column
j of AP . For example, with the permutation matrix above:

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0



a b c d e
f g h i j
k ℓ m n o
p q r s t
u v w x y

 =


p q r s t
u v w x y
a b c d e
k ℓ m n o
f g h i j



a b c d e
f g h i j
k ℓ m n o
p q r s t
u v w x y



0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

 =


c e d a b
h j i f g
m o n k ℓ
r t s p q
w y x u v


Left-multiplication by this example permutation matrix permutes the rows of the other
matrix in the pattern 1 → 3 → 4 → 1 and 2 ↔ 5, whereas right-multiplication permutes
the columns in the inverse pattern: 1 → 4 → 3 → 1 and 2 ↔ 5.

One related crucial point: in a matrix product AB, we can imagine that A works on
each column of B as a separate column vector. That is, suppose that

B =

 · · ·
b1 b2 · · · bp

· · ·


where the symbols bj represent columns of B interpreted as individual column vec-
tors, then

AB =

 · · ·
Ab1 Ab2 · · · Abp

· · ·


where Abi equals the matrix A times the column vector bi.

4.3 Matrices as vector and map representations

Key questions.

1. Matrix multiplication is equivalent to what operation on the maps that the ma-
trices represent?

2. Let v1 = (1, 0, 0), v2 = (1, 1, 0), and v3 = (0, 0, 2) ∈ R3. What is the column vector
representation of (6, 4, 10) with respect to the basis {v1,v2,v3}? What about with
respect to the basis {v2,v3,v1}?
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4.3.1 Representation of vectors

We’ve seen that every r × c matrix M creates a map (via matrix multiplication) from
Colc(F) to Colr(F). We can generalize this even further: matrices and column vectors
can model operations on any finite-dimensional vector space, as long as we choose a
basis for translating elements of the abstract vector space into column vectors. This is
what makes matrices useful.

What we mean by “model operations” will need some explanation. Suppose we
have two vector spaces V and W over the same field F. Suppose V has dimension c
and W has dimension r, and choose a basis {v1, . . . ,vc} of V and {w1, . . . ,wr} of W .

With respect to these bases, any element v ∈ V can be represented as a c-entry col-
umn vector in Colc(F) as follows: first write v = k1v1+· · ·+kcvc for some unique choice
of coefficients k1, . . . , kc. Then the representation of v, relative to the basis {v1, . . . ,vc}, isk1...
kc

, the column vector containing the coefficients of v.

It can’t be emphasized enough that a representation for a vector depends on the choice of
basis, including the order of basis elements. To illustrate this, let’s represent the element
v(3, 0,−5) ∈ R3 as an element of Col3(R). One natural choice of basis is, of course, the
standard basis {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}. Since v = 3e1 − 5e3, the

column vector representation of v relative to the standard basis is

 3
0
−5

. But we could

reorder the standard basis as, say, {e2, e3, e1}, and then the representation of v would

be

 0
−5
3

.

What if we chose an entirely different basis for R3? Let’s take, for instance, the
three vectors v1 = (1, 3,−2), v2 = (2,−1, 3), and v3 = (1, 5, 4). It’s not obvious that
these are linearly independent (though if you try to plot them in 3D space, you may be
able to see that their three endpoints and (0, 0, 0) don’t lie in the same plane), so you
can take it on faith that they are.1 How do we represent vectors with respect to this
basis? If we have some vector (a1, a2, a3) ∈ R3, then the coefficients x, y, z such that
xv1 + yv2 + zv3 = (a1, a2, a3) are the solution to the system

x+ 2y + z = a1

2x− y + 3z = a2

−2x+ 3y + 4z = a3

and the solution to this system for (a1, a2, a3) = (3, 0,−5) is (x, y, z) = (2, 1,−1); that
is, v = 2v1 + v2 − v3. So v, relative to the basis {v1,v2,v3}, has the column vector

representation

 2
1
−1

.

1Soon enough, we’ll develop and prove the correctness of an algorithm for checking if a set of vectors
is linearly independent. Or, if you want to right now, you can use the fact that replacing a vector with a
linear combination that includes it leaves the span of a set of vectors unchanged to prove that {v1,v2,v3}
has the same span as {e1, e2, e3}, though it may take some trial and error to find a sequence of vector
replacements that works.
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4.3.2 Representation of maps

We can also, of course, represent any element of our other vector space W as a column
vector with r entries relative to a chosen basis of W . This leads us to a natural question:
how can we represent linear maps T : V → W if the representation needs to take two
bases into account?

The answer is to use matrices. Any such map has a matrix representation M , rel-
ative to any basis for V and any basis for W , such that if c ∈ Colc(F) represents some
vector v relative to the chosen basis of V , then the matrix product Mc represents Tv
relative to the chosen basis of W . (Again, it should go without saying, the matrix M
generally depends on the choice of bases.)

To find the formula for M , first we’ll define a total of rc coefficients referred to by
two indices aij with 1 ≤ i ≤ r and 1 ≤ j ≤ c. Suppose we have our chosen bases
{v1, . . . ,vc} for V and {w1, . . . ,wr} for W . Then define the quantities a11, a21, . . . , ar1 to
be the coefficients of the image of v1 in the basis {w1, . . . ,wr}; that is, such that

Tv1 = a11w1 + a21w2 + · · ·+ ar1wr.

Likewise define a1c, . . . arc for every value of c to be the coefficients of Tvc.
Then for an arbitrary element v = k1v1 + · · ·+ kcvc ∈ V , we have the formula

Tv =k1Tv1 + k2Tv2 · · ·+ kcTvc

=k1(a11w1 + a21w2 · · ·+ ar1wr) + k2(a12w1 + a22w2 · · ·+ ar2wr)

+ · · ·+ kc(a1cw1 + a2cw2 + · · ·+ arcwr)

=(k1a11 + k2a12 + · · ·+ kca1c)w1 + (k1a21 + k2a22 + · · ·+ kca2c)w2

+ · · ·+ (k1ar1 + k2ar2 + · · ·+ kcarc)wr

This vector equation is represented by the matrix equation
k1a11k2a12 + · · ·+ kca1c

k1a21 + k2a22 + · · ·+ kca2c
...

k1ar1 + k2ar2 + · · ·+ kca2c

 =


a11 a12 · · · a1c
a21 a22 · · · a2c

...
... . . . ...

ar1 ar2 · · · arc



k1
k2
...
kc


where the column vector on the left represents Tv, the column vector on the right
represents v, and the matrix (which we’ll call M ) represents T . Note that in M :

1. Row number i specifies a linear combination whose value is the coefficient of the
ith codomain basis vector wi.

2. Column number j represents the image of the jth domain basis vector vj .2

2Convince yourself that multiplying any r × c matrix with the column vector


1
0
...
0

 ∈ Colc(F), with a

single entry of 1 at the top, gives the unmodified first column of the matrix, and more generally that mul-
tiplying by a column vector with only one entry of 1 and all other entries zero gives the corresponding
matrix column.
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So any map from a c-dimensional space to an r-dimensional space can be repre-
sented by a matrix with dimension r × c. Be careful: when we specify the dimensions
of a matrix, we give the number of rows before the number of columns, which is back-
wards from the order that we specify the domain and codomain of a map (i.e. with the
domain first and the codomain second). If we had used the convention of representing
linear maps by multiplying matrices with row vectors on the left rather than column
vectors on the right, we wouldn’t have this annoyance, but we’re stuck with it now.3

A few more important observations:

1. Every column in a matrix represents the image of one basis vector of the domain
of the underlying linear map, so the image of any element in the domain is rep-
resented by the corresponding linear combination of the matrix columns. So the
column space of a matrix represents the image of the underlying linear transformation,
just like how the column space of a matrix actually is the image of the multipli-
cation map Colr(F) → Colc(F).

2. Similarly, the nullspace of a matrix represents the kernel of the underlying linear trans-
formation. Remember that the nullspace of an r × c matrix A is the set of column
vectors v ∈ Colc(F) such that Av = 0 ∈ Colr(F), and the zero vector in any r-
dimensional vector space can only ever be represented, in any basis, by the zero
column vector.

3. If a linear operator T : V → V is bijective, then there is an inverse operator T−1

such that T−1 ◦ T and T ◦ T−1 are both the identity map. If T and T−1 have
matrix representations M and M ′ relative to some choice of basis for V (with
the same basis serving both for domain and for codomain), then since matrix
multiplication is equivalent to map composition, the matrix products MM ′ and
M ′M must be the identity matrix

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

We’ll call M ′ the inverse matrix of M , and write it as M−1, not actually M ′.

A square matrix with an inverse is called invertible or nonsingular; a square matrix
without an inverse is singular. The following conditions on an n×n matrix M are
equivalent by the matrix rank–nullity theorem: (1) M has rank n; (2) the nullspace
of M contains only 0 ∈ Coln(F); (3) the multiplication operator v 7→ Mv on
Coln(F) is injective; (4) v 7→ Mv is surjective; (5) any linear map T : V → W
(where dimV = dimW = n) representable by M is injective; (6) any such linear
map is surjective; (7) M has a matrix inverse.

For an actual example of representing linear transformations by matrices, let Pn(R)
be the (n+1)-dimensional vector space over R of polynomials with real coefficients and
degree at most n. Let T : P3(R) → P2(R) be the map Tp(x) = p′(x−1)−2xp′′(x), where

3This is not the only area in which the convention of writing functions to the left of the values of their
domain makes things difficult—remember also that in the composition (A ◦ B)(x), it’s function B that
gets applied first.



122 CHAPTER 4. MATRICES AND LINEAR SYSTEMS

p′ and p′′ mean first and second derivatives. (You may want to verify for yourself that
this is a linear map.)

Choose bases {x3, x2, x, 1} for P3(R) and {x2, x, 1} for P2(R). Then we can compute
the value that T takes on the elements of our chosen basis for P3(R):

Tx3 =
d

dx
(x− 1)3 − 2x

d2

dx2
x3

= 3(x− 1)2 − 12x2

= −9x2 − 6x+ 3

Tx2 =
d

dx
(x− 1)2 − 2x

d2

dx2
x2

= 2(x− 1)− 4x

= −2x− 2

Tx =
d

dx
(x− 1)− 2x

d2

dx2
x

= 1

T1 =
d

dx
1− 2x

d2

dx2
1

= 0

which gives us the matrix representation−9 0 0 0
−6 −2 0 0
3 −2 1 0

 .

We could use this matrix to compute the value that T takes on various elements of
P3(X). For instance, if p(x) = 2x3 − 3x2 + 4, then Tp is represented by the matrix
computation −9 0 0 0

−6 −2 0 0
3 −2 1 0




2
−3
0
4

 =

−18
−6
0


which represents −18x2 − 6x.

4.4 Linear systems

Linear algebra began as a set of algorithms for solving systems of linear equations—
that is, systems in which several linear combinations of unknown variables with known
coefficients must equal some known target values. The observation that lets us apply
matrix theory to linear systems is that we can rewrite a linear system as a matrix equa-
tion, with a column vector of unknown variables, another column vector of equation
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values, and a matrix of coefficients. For example, the system

x+ 2y + 3z = 0

3x− y − 4z = 6

−x+ y + z = −1

is equivalent to the matrix form 1 2 3
3 −1 −4
−1 1 2

xy
z

 =

 0
6
−1

 .

Any system of e linear equations in v variables can be written as a matrix equation
Ax = b, where x is an unknown column vector of v variables, A is an e× v matrix that
takes column vectors of v variables to column vectors of e equation values, and b is
a column vector of the e specified values of the equation. A system with a solution is
consistent; otherwise, it’s inconsistent.

Our method of solving linear systems rests on two observations:

1. The solutions to Ax = b are the preimage of the column vector b ∈ Cole(F) un-
der the map Colv(F) → Cole(F) induced by multiplication by A, and this map
has kernel nullspA. So the set of solutions is either empty or a coset of nullspA.
(Remember from section 2.7.2 that for a linear map T : V → W , the preimage
T−1({w}) of any single-point subset of W is either a coset of kerT or empty.)

2. Suppose R is some v × v matrix that gives a bijective multiplication map from
Colv(F) to itself: that is, for two vectors v1,v1 ∈ Colv(F) we have Rv1 = Rv2 if
and only if v1 = v2. Then Ax = b if and only if RAx = Rb; that is, the two
systems Ax = b and RAx = Rb have the same solution sets. And a good choice
of R could give a matrix RA with a simpler structure than A, whose kernel and
preimages are easier to compute.

Ideally, we can choose R to make RA equal the identity matrix I , so R = A−1 and
RAx = Rb becomes x = Rb. This won’t always be the case (and, if A isn’t square,
it will never be the case), but we can at least choose R such that RA is a matrix in
a standard form called reduced row-echelon form, and systems with matrices in this
form are especially easy to solve. In the next few sections, we’ll see how to find
the best choice of R.

4.5 Elementary row operations

We’ll build R as a product (that is, map composition) of three basic types of matrices.
These basic matrices are sometimes called elementary row operation matrices, because
multiplying a elementary row operation matrix Re on the left with another matrix A on
the right produces a product ReA in which all but one or two rows are the same as in A,
and the changed rows are changed in one of three simple ways. Every elementary row
operation can be reversed with another elementary row operation, so the matrices that
represent them must be invertible, and any product of the matrix representations of
elementary row operations is also invertible (and thus creates a bijective multiplication
map on column vectors).
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Specifically, there are three types of elementary row operation, which we’ll demon-

strate on the 3× 2 example matrix M =

 1 2
10 30
e π

:

1. You can multiply a row by a nonzero scalar. Let’s denote multiplying row i by λ as
(ri 7→ λri). The matrix that represents this is the identity matrix with the 1 in row
i and column j replaced by λ. For example,

(r1 7→ λr1)M =

3 0 0
0 1 0
0 0 1

 1 2
10 30
e π

 =

 2 6
10 30
e π


The inverse operation to ri 7→ λri is ri 7→ λ−1ri. Applying these operations in
sequence (in either order) leaves the original matrix unchanged, and multiplying
the matrix representations of these operations gives the identity matrix.

2. You can swap any two rows. Denote swapping rows i and j by (ri ↔ rj). In matrix
form, this is the identity matrix except that the entries at positions (i, j) (that is,
row i and column j) and (j, i) are 1, and the diagonal entries at positions (i, i) and
(j, j) are zero. For example,

(r1 ↔ r3)M =

0 0 1
0 1 0
1 0 0

 1 2
10 30
e π

 =

 e π
10 30
1 2


(You can get any reordering of the rows that you want by putting together enough
individual row swaps.)

The operation ri ↔ rj is its own inverse.

3. Finally, you can add a multiple of any row i to any other row j ̸= i, producing a new
row j but leaving row i unchanged. Let’s denote adding λ times row i to row j
by by ri 7→ ri+λrj). The matrix that represents this transformation is the identity
matrix with an additional entry of λ, insead of 0, in row i and column j. For
example,

(r1 7→ r1 − 2r2)M =

1 −2 0
0 1 0
0 0 1

 1 2
10 30
e π

 =

−19 −58
10 30
e π


The inverse operation to ri 7→ ri + λrj is ri 7→ ri − λrj .

We’ll give these operations the respective names scale, swap, and shear.4 The first two
names should be clear, the third perhaps less so. The reason for the name is the geomet-
ric interpretation of when the matrix that represents the shear operation is interpreted
as a linear operator on Rn relative to the standard basis: the operation ri 7→ ri + λrj

4Strictly speaking, swap operations are unnecessary: the swap ri ↔ rj is equivalent to the sequence
rj 7→ rj + ri (shear), ri 7→ ri − rj (shear), ri 7→ −ri = (−1) × ri (scale), rj 7→ rj − ri (shear), so we
can transform any sequence of elementary operations into an equivalent sequence of scales and shears
alone. But it’s easier to formulate algorithms if we can use all three operations as basic steps.
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applied to the identity matrix produces a “shear” matrix that takes the standard basis
vector ej to a slanted image λei + ej while all other vectors remain orthogonal to each
other. This operation maps the unit square in R2 to a parallellogram with one side
along an axis, and maps the unit (hyper)cube in Rn for n ≥ 3 to a (hyper)prism with a
parallelogram base.

For instance, the row operation r1 7→ r1− 1
2
r2 on a 2× c matrix has the matrix repre-

sentation R =

[
1 −1

2

0 1

]
. Relative to the standard basis on R2, this matrix R represents a

map of the form R(x, y) = (x− 1
2
y, y) that takes e1 to itself and e2 to −1

2
e1 + e2. Graph-

ically, it takes the coordinate plane that we can represent by this image:

to this image:

(The letter F in the diagrams has no special meaning; it’s just there as an aid to
visualization, to show what’s happening to the entire coordinate plane.)

Since matrix multiplication is function composition, the matrix equivalent of a se-
quence of elementary row operations is the product of the matrices for the individual
operations—arranged, of course, from the first operation on the right to the last opera-
tion on the left. For instance, the swap r1 ↔ r2 followed by the shear r3 7→ r3 + 4r2 has
matrix representation 1 0 0

0 1 0
0 4 1

0 1 0
1 0 0
0 0 1

 =

0 1 0
1 0 0
4 0 1

 .

Finally, there are three crucial facts about row operations:

1. They preserve the row space of a matrix. The spanning set for the row space of a
matrix is its rows, and scaling an element of a set of vectors, changing the order
of elements in a set, and replacing an element by a linear combination of it with
other elements (recall section 1.5.2) do not change the span.
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2. They preserve the nullspace of a matrix: since multiplication by an elementary
row operation matrix R is bijective, RAx = 0 if and only if R = 0.

3. They preserve the dimension of the column space, though not necessarily the col-
umn space itself. Remember that if A represents a linear transformation T : V →
W relative to some bases of V and W , then the nullspace and column space of
A represent the kernel and image of T . As dim imT + dimkerT = dimV for any
linear transformation T : V → W by the rank–nullity theorem, so any operation
on A that keeps the nullspace (or even the dimension of the nullspace) the same
has to keep the dimension of the column space the same as well.

As any single row operation preserves these quantities for an arbitrary input ma-
trix, it follows that any sequence of row operations must also preserve them.

4.6 Reduced row-echelon form

By applying row operations to a matrix, we can turn it into a matrix with a form called
reduced row-echelon form (RREF). A matrix’s RREF is produced from the original matrix
via elementary row operations, so any matrix properties that are preserved by elemen-
tary row operations must be equal in the original matrix and its RREF. Three invariant
properties in particular will be important to us: the row space, the nullspace, and the
dimension of the column space (but not the column space itself).

To be more precise, for every r × c matrix M , there is a unique RREF matrix E
and a unique product R of elementary row operation matrices5 such that E = RM . It
turns out that if M is a square bijective matrix, then E will be the identity matrix and
R = M−1, so an algorithm to find a matrix’s RREF can also find its inverse matrix.

At this point, you may be wondering what reduced row-echelon form actually is.
A matrix is in RREF if it satisfies the following criteria:

1. If a row is not entirely zeros, then its first (i.e. leftmost) nonzero entry is 1. This
entry is called the pivot.

2. Each pivot is the only nonzero entry in its column.

3. Each pivot is further right than all pivots in rows above it.

4. Rows of all zeros, if any, are at the bottom of the matrix: there’s no row of all
zeros above a row with at least one nonzero.

One example of a matrix in reduced row-echelon form, with pivot elements in
boxes, is 

1 0 −3 0 0 5

0 1 2 0 0 0

0 0 0 1 0 −7

0 0 0 0 1 −2
0 0 0 0 0 0


5One important subtlety: R as a matrix is unique, but it could be derived from many different se-

quences of operations—to take a trivial example, taking any sequence of operations and then appending
an even number of swaps of the same two rows produces a new sequence of operations with the same
result.
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4.7 Gauss–Jordan elimination

4.7.1 Definitions

The procedure to generate a matrix in reduced row-echelon form is called Gauss–Jordan
elimination (henceforth, GJE). It’s straightforward and completely mechanical.

1. Choose the leftmost column that isn’t all zeros, if such a column exists. If the first
row has a zero in this column, swap it with any row that doesn’t.

2. Divide the first row by its first nonzero entry. This entry is now 1 and will be our
first pivot.

3. Add multiples of the first row to every other row so that every non-pivot entry
in the first pivot’s column is now zero.

4. Repeat for the second row. Find the leftmost column to the right of the first pivot
column that has a nonzero entry somewhere other than the first row. If the second
row has a zero entry in this column, swap it with one that doesn’t.

5. Divide the new second row by its first nonzero entry so it also has a pivot 1.

6. Add multiples of the new second row to all other rows, including the first row if
necessary, to cancel all elements in the same column as the second pivot.

7. Find the next column to the right that has a nonzero entry in the third row or be-
low. Repeat working down and to the right until there are no columns or nonzero
rows left.

4.7.2 Example

Consider the matrix 
2 4 0 −1 8 2
3 6 0 −2 5 1
1 0 4 2 −3 0
0 −3 6 1 −26 −1


Start with r1 7→ 1

2
r1 to get 

1 2 0 −1
2

4 1
3 6 0 −2 5 1
1 0 4 2 −3 0
0 −3 6 1 −26 −1


Now conduct r2 7→ r2 − 3r1 and r3 7→ r3 − r1, setting the non-pivot entries in the first
column to zero. 

1 2 0 −1
2

4 1
0 0 0 −1

2
−7 −2

0 −2 4 5
2

−7 −1
0 −3 6 1 −26 −1


The second column has nonzero entries below the first row, so it should be the second
pivot column. But the second row has an entry of zero in the second column, so we
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need to swap it with the third or fourth row. Let’s choose the third row. (You can check
for yourself that choosing the fourth row gives the same final result, and we’ll give a
general proof soon that it doesn’t matter which row you choose.) Swap rows r2 ↔ r3,
then divide the new second row by its leading term −2 (that is, r2 7→ −1

2
r2) to get

1 2 0 −1
2

4 1
0 1 −2 −5

4
7
2

1
2

0 0 0 −1
2

−7 −2
0 −3 6 1 −26 −1


and clear all non-pivot entries in the second column with r1 7→ r1 − 2r2 and r4 7→
r4 + 3r2: 

1 0 4 2 −3 0
0 1 −2 −5

4
7
2

1
2

0 0 0 −1
2

−7 −2
0 0 0 −11

4
−31

2
1
2


The third column has no nonzero entries below row 2, so we’ll have to leave it without
a pivot and make the fourth column into the third pivot. To get a leading 1 in the first
row, carry out r3 7→ −2r3: 

1 0 4 2 −3 0
0 1 −2 −5

4
7
2

1
2

0 0 0 1 14 4
0 0 0 −11

4
−31

2
1
2


To clear the non-pivot entries in the fourth column, we can do r1 7→ r1 − 2r3, r2 7→
r2 +

5
4
r3, and r4 7→ r4 +

11
4
r3, yielding:

1 0 4 0 −31 −8
0 1 −2 0 21 11

2

0 0 0 1 14 4
0 0 0 0 23 23

2


Finally, since the fifth column has a nonzero entry in the fourth row, we can make it
into a fourth pivot column. The procedure here is simple: divide the fourth row by 23
to make it a pivot entry: 

1 0 4 0 −31 −8
0 1 −2 0 21 11

2

0 0 0 1 14 4
0 0 0 0 1 1

2


and then eliminate the other entries in the fifth column with r1 7→ r1 + 31r4, r2 7→
r2 − 21r4, and r3 7→ r3 − 14r4. This gives the RREF:

1 0 4 0 0 15
2

0 1 −2 0 0 −5
0 0 0 1 0 −3
0 0 0 0 1 1

2


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4.7.3 Equality of row and column space dimensions

First, though, we can conclude a lot about properties of general matrices just from
the fact that elementary row operations can turn any matrix into RREF, even without
proving RREF uniqueness. Some notation: write e1, . . . , ec for the standard basis vec-
tors of Colc(F), where the dimension c will usually be clear from context. (For instance,

if c = 2, then e1 =

[
1
0

]
and e2 =

[
0
1

]
.) Write eTi for the ith standard basis vector of

Rowr(F). (The T stands for transpose; we’ll discuss the more general concept of matrix
transposes later.)

Two observations that are almost trivial in themselves give us an important theorem
on matrix subspaces:

1. The dimension of the column space of any matrix in RREF equals the number of pivots
(equivalently, the number of nonzero rows). If a matrix E in RREF has p pivots, then
e1, . . . , ep all as columns of E, so colspE includes at least span{e1, . . . , ep}. But no
column of E has a nonzero entry below row p, so span{e1, . . . , ep} is the entirety
of colspE.

2. The nonzero rows of any matrix in RREF are linearly independent. If r1, . . . , rp are the
nonzero rows of E, then any linear combination k1r1 + · · · + kprp has to have an
entry ki in the column with row i’s pivot, because ri has 1 in that column and
every other row has zero. So k1r1 + · · · + kprp =

[
0 0 · · · 0

]
if and only if

k1 = · · · = kp = 0.

A corollary that’s important enough to label a theorem:

Theorem. Every matrix has a row and column space of the same dimension.

Proof. Every matrix in RREF has row and column spaces of the same dimension (namely,
the number of pivots), and every matrix can be put into RREF with row operations that
preserve the row space and the dimension of the column space.

4.7.4 RREF existence and uniqueness

GJE gives one possible RREF of a matrix, but you may be wondering if there’s more
than one possibility, because our choice of steps wasn’t uniquely determined. In our
example, after all, we chose to swap row 2 with row 3 instead of row 4, and it’s not
obvious that this choice didn’t matter for the end result.

But it turns out that GJE may have multiple possible sequences of steps for a given
input matrix, but it only has one possible end result: every matrix has one and only
one RREF. Let’s prove this. The proof is a bit complicated and not that important to
memorize, but you may find it interesting.

Proposition. Every matrix can be transformed into exactly one matrix in RREF via elemen-
tary row operations.

Proof. GJE gives us one RREF matrix; we want to prove that there can’t be two.
If an r × c matrix M can be transformed into two other matrices E and E′ (not necessarily in RREF)

via elementary row operations, then reversing the steps from M to E and then following the steps from
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M to E′ gives a sequence of elementary row operations that transforms E into E′. Let R be the r × r
matrix representation of this sequence, so RE = E′ and R−1E′ = E (remember that R is necessarily
invertible).

We claim that if R and E are any r × r and r × c matrices such that R is invertible and both E and
E′ := RE are in RREF, then E = E′. Write ci and c′i for the ith columns of E and E′, and remember that
c′i = Rci (see page 118).

Since R has trivial nullspace, multiplication by R is a bijection from Colr(F) to itself, so the the
image of any subspace of Colr(F) under multiplication by R must be another subspace of Colr(F) with
the same dimension. As multiplication by R sends each ci to the corresponding c′i, it also sends the
subspace span{c1, . . . , ci} to span{c′1, . . . , c′i}, so these two subspaces must have equal dimension for
every integer 1 ≤ i ≤ c.

In a matrix in RREF, the first entry in each row must be a pivot, so a non-pivot column can only have
a nonzero entry in row j if ej was a pivot column somewhere to its left. This means that every non-pivot
column can be written as a linear combination of the pivot columns to its left, so dim span{c1, . . . , ci} is
the number of pivot columns in E in positions 1 through i, and likewise dim span{c′1, . . . , c′i} counts the
pivot columns in positions 1 through i of E′. These quantities are equal for every integer i, so E and E′

must have pivot columns in the same positions.
The pivot columns in corresponding positions of E and E′, furthermore, must be equal: in any r× c

matrix in RREF, the first pivot column is always the first standard basis vector e1 ∈ Colr(F), the second
pivot column is always e2, and so forth. If E has rank k, then the column basis vectors e1, . . . , ek all occur
at corresponding positions in E and E′, so Rei = ei for all integers 1 ≤ i ≤ k (because multiplication by
R maps columns in E to corresponding columns in E′). This means that Rv = v for any column vector
v ∈ span{e1, . . . , ek}. And every column of E must be in span{e1, . . . , ek}, because rows 1 to k are pivot
rows and and the other rows are all zeros. So the non-pivot columns of E and E′ must also be identical,
and E = E′.

So RREF is unique, and any choice of row exchanges, as long as it avoids division
by zero, gives the same result. Computer implementations of GJE use row exchanges
to avoid not only zero pivots but also very small pivots, because division by small
numbers can introduce large rounding errors.

Two final notes:

1. Since row operations preserve row space, one way to find a basis for a subspace
W ⊂ Fn, given a spanning set {w1, . . . ,wr}, is to write w1, . . . ,wr as rows of an
r×n matrix, and then carry out row reduction. The nonzero rows of the resulting
matrix provide a basis for W .

2. The only n× n RREF matrix with rank n is the identity matrix. So if A is a square
invertible matrix, then its inverse A−1 is the matrix representation of the sequence
of elementary row operations in GJE that reduces A to I . This also means that
since every invertible matrix M is itself the inverse of another matrix (namely
M−1), every invertible matrix M can be decomposed into a product of elementary
row operation matrices.

4.8 Nullspaces of RREF matrices

Every matrix has the same nullspace as its RREF, so if we can find the nullspace of
a matrix in RREF, then GJE lets us find the nullspace of any matrix. It turns out that
finding the nullspace of a matrix in RREF is simple with the following procedure:

1. Add rows of zeros between the pivot rows and delete rows of zeros from the
bottom of the matrix so that all pivots on the diagonal from top left to bottom
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right and all non-pivot diagonal entries are zero. (Adding rows of zero to a matrix
M means adding entries of zero to every matrix product Mc of M with a column
vector c, so it doesn’t change nullspM .)

2. Change all entries of zero on the diagonal to −1.

The non-pivot columns in the result are a basis for the nullspace of the original matrix
(that is, the matrix before we changed the diagonal entries).

Let’s illustate this with our previous example:
1 0 4 0 0 15

2

0 1 −2 0 0 −5
0 0 0 1 0 −3
0 0 0 0 1 1

2

 = rref


2 4 0 −1 8 2
3 6 0 −2 5 1
1 0 4 2 −3 0
0 −3 6 1 −26 −1

 .

After inserting zero rows to produce a square matrix with pivots on the diagonal, and
changing any non-pivot entries on the diagonal to −1, this matrix becomes

1 0 4 0 0 15
2

0 1 −2 0 0 −5
0 0 −1 0 0 0
0 0 0 1 0 −3
0 0 0 0 1 1

2

0 0 0 0 0 −1



so a basis for the nullspace is




4
−2
−1
0
0
0

 ,



15
2

−5
0
−3
1
2

−1




. Here’s a proof of correctness:

Proposition. This construction gives a basis for the nullspace of a matrix in RREF.

Proof. Let M be the square matrix created from the original RREF matrix by adding or deleting rows of
zero (which, as we just mentioned, does not change its nullspace), but without changing entries of zero
on the diagonal to −1. Let n be the number of rows or columns of M . Let mij be the element in row i
and column j of M , let ri ∈ Rown(F) be the ith row of M , and let cj ∈ Coln(F) be the jth column of
M . Let B be the set of putative nullspace basis vectors that we defined above (i.e. the set of non-pivot
columns with changed diagonal entries), and write |B| for the size of B. Call an integer k ∈ {1, . . . , n} a
“pivot index” if ck is a pivot column of M (equivalently, if rk is an original row of the matrix rather than
an added row of zeros), and a “non-pivot index” otherwise. Every element of B has the form ck − ek,
where ek is the kth standard basis vector of Coln(F) and k is a non-pivot index. Write bk := ck − ek.

We’ll prove three claims that together imply that B is a basis for nullspM :

1. dimnullspM = |B|.

2. B is linearly independent.

3. Every element of B is in nullspM .

(Why are these claims sufficient? Claims 2 and 3 mean that B spans a |B|-dimensional space contained
in nullspM , so if nullspM has dimension |B| by claim 1, it must actually equal spanB.)

Claim 1 is the rank–nullity theorem for matrices (page 116): the n − |B| pivot columns of M are a
basis for the image of the map Coln(F) → Coln(F) produced by multiplication by M , so dimnullspM =
n− dim colspM = n− (n− |B|) = |B|.
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To prove claim 2, note that for every non-pivot index k, bk is the only element of B with a nonzero
entry (namely −1) in row k, because row k of M is one of the added rows of (originally) zeros. So
any linear combination from B must have a nonzero kth entry whenever bk has a nonzero coefficient,
because no other element of B could cancel it.

To prove claim 3, let k be a non-pivot index. Then Mbk = M(ck − ek) is a column vector whose rth
entry is

rrck − rrek =

(
n∑

i=1

mrimik

)
−mrk.

We want to prove that this expression is zero for every row index r. (Remember that the product of a
1 × n row vector with an n × 1 column vector is a 1 × 1 matrix, which we can consider equivalent to a
scalar.) If r is a non-pivot index, then rr is all zeros and rr(ck − ek) = 0, so we just have to consider the
case when r is a pivot index.

If i is a pivot index other than r, then mri = 0, because the only nonzero entry in a pivot column is
the pivot itself. And if i is a non-pivot index, then mik = 0, because non-pivot rows of M are all zero.
So the only nonzero term in the sum

∑n
i=1 mrimik is mrrmrk for i = r. And since r is a pivot index, so

mrr = 1. So rr(ck − ek) = mrk −mrk = 0 when r is a pivot index as well.

4.9 Solving systems with Gauss–Jordan elimination

We’ve mentioned that if we have a linear system Ax = b with unknown variables x,
and R is any bijective square matrix with the same number of rows as A, then Ax = b if
and only if RAx = Rb. In particular, R could represent the sequence of row operations
that transforms A to its RREF. We can compute Rb without explicitly computing R if,
whenever we apply a row operation to A, we also apply it to b. We can do this with
standard GJE on a special augmented matrix, which has the matrix of coefficients A on
the left and an extra column with the equation values b on the right.

First, let’s make the connection between GJE and linear systems more explicit. Ev-
ery row operation in GJE corresponds to a step in solving a corresponding linear sys-
tem. Consider, for example, the system

y − 4z = 2

2x− 4y + 2z = 8

2x+ 3y − z = −3.

You might solve this with the following steps:

1. Swap the first and second equations:

2x− 4y + 2z = 8

y − 4z = 2

2x+ 3y − z = −3

2. Divide the first equation by 2:

x− 2y + z = 4

y − 4z = 2

2x+ 3y − z = −3
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3. Subtract twice the first equation from the third, to eliminate x:

x− 2y + z = 4

y − 4z = 2

7y − 3z = −11

4. Add twice the second equation to the first, to eliminate y:

x− 7z = 10

y − 4z = 2

7y − 3z = −11

5. Subtract seven times the second equation from the third, to eliminate y:

x− 7z = 8

y − 4z = 2

25z = −25

6. Divide the last equation by 25:

x− 7z = 8

y − 4z = 2

z = −1

7. Add seven times the third equation to the first:

x = 1

y − 4z = 2

z = −1

8. Add four times the third equation to the second.

x = 1

y = −2

z = −1
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Each of these steps is equivalent to a row operation on an augmented matrix of
the system coefficients and an extra column of equation values. We write augmented
matrices with a line separating the original matrix from the extra column, like this:

0 1 −4 2
2 −4 2 8
2 3 −1 −3


Conducting the equivalent row operations on the augmented matrix looks like this:

0 1 −4 2
2 −4 2 8
2 3 −1 −3

 r1↔r2−→

2 −4 2 8
0 1 −4 2
2 3 −1 −3

 r1 7→r1/2−→

1 −2 1 4
0 1 −4 2
2 3 −1 −3


r3 7→r3−2r1−→

1 −2 1 4
0 1 −4 2
0 7 −3 −11

r1 7→r1+2r2−→

1 0 −7 8
0 1 −4 2
0 7 −3 −11

 r3 7→r3−7r2−→

1 0 −7 8
0 1 −4 2
0 0 25 −25


r3 7→r3/25−→

1 0 −7 8
0 1 −4 2
0 0 1 −1

 r1 7→r1+7r3−→

1 0 0 1
0 1 −4 2
0 0 1 −1

 r2 7→r2+4r3−→

1 0 0 1
0 1 0 −2
0 0 1 −1

 .

The augmented matrix that we started with contained A and b; the matrix that we

ended with had RA and Rb. We’ve shown that

0 1 −4
2 −4 2
2 3 −1

xy
z

 =

 2
8
−3

 if and only

if

1 0 0
0 1 0
0 0 1

xy
z

 =

 1
−2
−1

 .

4.10 Underdetermined systems

For a system with n equations in n variables, GJE yields the identity matrix on the left
and a column vector of solutions on the right, unless the left-hand side of one equation
is a redundant linear combination of the left-hand sides of the others and the matrix
of coefficients doesn’t have full rank (a complication that we’ll address in the next
section). But for systems with more variables than equations (called underdetermined
systems), the setup is a bit more complicated. Remember that the solution set to Ax =
b is either empty or a coset of nullspA. If A is a e× v matrix giving a linear map from a
v-dimensional space of variable values to a e-dimensional set of equation values, and
v ≥ e, then multiplication by A cannot be injective from dimensional considerations
alone, and A’s nullspace has to contain more than just the zero vector.

Let’s take this system of two equations in four variables as an example:

4w + 2x− 3y − 4z = 20

2w + x− 3y + z = −5
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Gauss-Jordan elimination on the augmented matrix runs like this:[
4 2 −3 −4 20
2 1 −3 1 −5

]
r1 7→r1/4−→

[
1 1

2
−3

4
−1 5

2 1 −3 1 −5

]
r2 7→r2−2r1−→

[
1 1

2
−3

4
−1 5

0 0 −3
2

3 −15

]
r2 7→−2/3r2−→

[
1 1

2
−3

4
−1 5

0 0 1 −2 10

]
r1 7→r1+

3
4
r2−→
[
1 1

2
0 −5

2
25
2

0 0 1 −2 10

]
So the original system, in matrix form

[
4 2 −3 −4
2 1 −3 1

]
w
x
y
z

 =

[
20
−5

]

is equivalent to the reduced system

w +
1

2
x− 5

2
z =

25

2
y − 2z = 10

or in matrix form RAx = Rb, as

[
1 1

2
0 −5

2

0 0 1 −2

]
w
x
y
z

 =

[
25
2

10

]

The solution to this system is a coset of nullspRA (which, remember, also equals
nullspA), so we need to find two things: some arbitrary solution x to RAx = Rb to be
a base point for the coset, and a basis of nullspRA. To find a base point for the coset,
we can note that the variables w and y—sometimes called “pivot variables,” as their
corresponding columns in RA are pivot columns—occur only in one equation each,
with coefficient 1, and only in combination with non-pivot variables (sometimes called
“free variables”). This is true of all linear systems with RREF matrices: each equation
will have a different single pivot variable, with coefficient 1, and then zero or more
free variables. One solution to this system comes from setting each pivot variable to
the value of the only equation that it appears in, and setting the free variables to zero.
In this example, we have (w, x, y, z) = (25/2, 0, 10, 0). If we take an augmented matrix
for the system and insert rows of zeros to align the pivots on the diagonal, then the
right-hand column of the result gives this solution as a column vector.

1 1
2

0 −5
2

25
2

0 0 0 0 0
0 0 1 −2 10
0 0 0 0 0


In section 4.8, we showed how to find nullspA: take this padded matrix (without the

equation values column) and change the non-pivot diagonal entries on the left-hand
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side to −1, to get 
1 1

2
0 −5

2

0 −1 0 0
0 0 1 −2
0 0 0 −1



then take the non-pivot columns




1
2

−1
0
0

 ,


−5

2

0
−2
−1


 as a basis for nullspA.

By combining our chosen base point and nullspace basis, we get a general formula
for the solution set:

w
x
y
z

 =


25
2

0
10
0

+ c1


1
2

−1
0
0

+ c2


−5

2

0
−2
−1

 =


25
2
+ 1

2
c1 − 5

2
c2

−c1
10− 2c2
−c2


This is not the only way to express the solution set. First, we don’t have to use (25

2
, 0, 10, 0)

as the base point. If we set c1 = 0 and c2 = 5, for example, we get an integer solution
(w, x, y, z) = (0, 0, 0,−5) that we could use as the base point instead. Second, we could
choose a different basis for nullspA—for instance, we could scale the basis vectors to

have integer entries, say




1
−2
0
0

 ,


5
0
4
2


. These two changes together give an alternate

(but equivalent!) general form for the solution set
w
x
y
z

 =


c1 + 5c2
−2c1
4c2

−5 + 2c2


where, again, c1 and c2 can be any real coefficients.

In summary, to solve an underspecified system Ax = b:

1. Reduce the augmented matrix
[
A b

]
to RREF.

2. Add and remove rows of zero from rref
[
A b

]
so that its left part is square and

has all pivots on the diagonal.

3. Take the extra column of the resulting matrix as a representative solution x.

4. Change all zero entries on the diagonal of the resulting matrix to −1 and take the
columns that include these entries as a basis of nullspA.

The solution to the system is x+ nullspA.

4.11 Singular and overdetermined systems

Sometimes the left-hand side of one equation in a system is just a linear combination
of the left-hand sides of some other equations. We call systems like this singular. One
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large class of linear systems that must be singular are overdetermined systems: those
with more equations than variables.

Reducing the matrix of coefficients for a singular system to RREF has to leave a row
of all zeros, which corresponds to eliminating all the variables in one of the equations
in the system and leaving a left-hand side of zero. The original system has a solution if
and only if the values of these equations with left-hand side zeros in the reduced system
are also zero: if we can manipulate a system of equations with steps that preserve the
set of solutions to the system and get an equation like 0x + 0y = 1, then the system
could not have had any solutions to begin with.

Consider, for instance, the system of three equations in two variables

x+ y = 3

2x− 3y = −4

4x− y = k

where k is some constant. The LHS of the third equation is the LHS of the second
plus twice the LHS of the first. If x + y = 3 and 2x − 3y = −4, furthermore, then
4x− y = 2(x+ y) + (2x− 3y) = 2× 3− 4 = 2. So this system is solvable, with solution
(x, y) = (1, 2), only if k = 2. Otherwise, the third equation cannot hold simultaneously
with the first and second, and the system is inconsistent. (If you plot the lines x+y = 3,
2x − 3y = −4, and 4x − y = k on the same graph, then you will see that they have a
common point of intersection only if k = 2..)

Let’s translate these observations on this example system into matrix language.
First, look at the consistent system with k = 2. GJE of the augmented matrix is

1 1 3
2 −3 −4
4 −1 2

 r2 7→r2−2r1−→

1 1 3
0 −5 −10
4 −1 2

r3 7→r3−4r1−→

1 1 3
0 −5 −10
0 −5 −10


r2 7→−r2/5−→

1 1 3
0 1 2
0 −5 −10

 r1 7→r1−r2−→

1 0 1
0 1 2
0 −5 −10

r3 7→r3+5r2−→

1 0 1
0 1 2
0 0 0


which is equivalent to the system

x = 1

y = 2

0 = 0

The last line 0 = 0 is, of course, always true, and the augmented matrix has rank 2.
Now if we took an inconsistent system, say

x+ y = 3

2x− 3y = −4

4x− y = 4

then GJE of the augmented matrix looks similar at first, but then diverges and results



138 CHAPTER 4. MATRICES AND LINEAR SYSTEMS

in a matrix with rank 3:

1 1 3
2 −3 −4
4 −1 4

r2 7→r2−2r1−→

1 1 3
0 −5 −10
4 −1 4

r3 7→r3−4r1−→

1 1 3
0 −5 −10
0 −5 −8


r2 7→−r2/5−→

1 1 3
0 1 2
0 −5 −8

 r1 7→r1−r2−→

1 0 1
0 1 2
0 −5 −8

 r3 7→r3+5r2−→

1 0 1
0 1 2
0 0 2


r3 7→r3/2−→

1 0 1
0 1 2
0 0 1

 r1 7→r1−r3−→

1 0 0
0 1 2
0 0 1

 r2 7→r2−2r1−→

1 0 0
0 1 0
0 0 1


The extra column in the augmented matrix is a a pivot column, and we have reduced
the inconsistent system to the system

x = 0

y = 0

0 = 1.

This system has no solution: no assignment of variables can make 0 equal 1. In general,
if one equation in a system is incompatible with those that came before it, then Gauss–
Jordan elimination turns the augmented matrix row for that equation into a pivot row
with a pivot in the rightmost column, corresponding to the equation 0 = 1. This is
the essence of a result called the Rouché–Capelli theorem, which states that a system has
a solution if and only if its matrix of variable coefficients has the same rank as the
augmented matrix.

Another proof of the Rouché–Capelli theorem: Ax = b has a solution if and only if
b is in the column space (that is, image of the multiplication map) of A—that is, if and
only if appending b to A as a new column leaves the column space and its dimension
(that is, the rank of A) unchanged.

4.12 Matrix inversion by Gauss–Jordan elimination

The only n× n matrix in RREF with rank n is the identity matrix I , so if A is any n× n
matrix that also has full rank (and, therefore, has an inverse matrix), then GJE reduces
A to I . If R is the matrix encoding the row operations that reduce A to RREF, then
RA = I . That is, R is the inverse matrix of A.

As R = RI , we can find R by performing row operations on A and, in parallel,
performing the same row operations on I . To do this, set up an augmented matrix
with A on the left side and n extra rows constituting the identity matrix I on the right.
After row reduction is complete, the left side contains I and the right side contains
R = A−1.

Let’s illustrate with the example A =

 7 2 1
0 3 −1
−3 4 −2

. Setting up the augmented
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matrix and carrying out row reduction gives 7 2 1 1 0 0
0 3 −1 0 1 0
−3 4 −2 0 0 1

 r1 7→r1/7−→

 1 2
7

1
7

1
7

0 0
0 3 −1 0 1 0
−3 4 −2 0 0 1


r3 7→r3+3r1−→

1 2
7

1
7

1
7

0 0
0 3 −1 0 1 0
0 34

7
−11

7
3
7

0 1

 r2 7→r2/3−→

1 2
7

1
7

1
7

0 0
0 1 −1

3
0 1

3
0

0 34
7

−11
7

3
7

0 1


r1 7→r1−2r2/7−→

1 0 5
21

1
7

− 2
21

0
0 1 −1

3
0 1

3
0

0 34
7

−11
7

3
7

0 1

r3 7→r3−34r2/7−→

1 0 5
21

1
7

− 2
21

0
0 1 −1

3
0 1

3
0

0 0 1
21

3
7

−34
21

1


r3 7→21r3−→

1 0 5
21

1
7

− 2
21

0
0 1 −1

3
0 1

3
0

0 0 1 9 −34 21

 r1 7→r1−5r3/21−→

1 0 0 −2 8 −5
0 1 −1

3
0 1

3
0

0 0 1 9 −34 21


r2 7→r2+r3/3−→

1 0 0 −2 8 −5
0 1 0 3 −11 7
0 0 1 9 −34 21


So A−1 =

−2 8 −5
3 −11 7
9 −34 21

. You can test this result yourself by computing the products

AA−1 and A−1A. Note that the inverses of most integer matrices will have non-integer
rational entries; this example was chosen to look nice.

4.13 Triangular matrices

4.13.1 Defined

An upper triangular matrix is a matrix whose entries below the diagonal are all zero. For
example, a 4× 4 upper triangular matrix has the form

⋆ ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆
0 0 ⋆ ⋆
0 0 0 ⋆


where the entries marked with ⋆ can be anything (including, possibly, zero). A lower
triangular matrix, symmetrically, has only zeros above the diagonal:

⋆ 0 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆ ⋆


Note that diagonal matrices are both upper triangular and lower triangular.

4.13.2 Properties of square triangular matrices

Square triangular matrices have a few important properties that will become useful
later:
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Proposition. A square triangular matrix has full rank if and only if all of its diagonal entries
are nonzero.

Proof. We’ll prove this statement for upper triangular matrices first. Proving an if-and-
only-if statement requires proving two implications.

1. Diagonal entries all nonzero implies full rank. Suppose c1, . . . , cn are the columns
of an upper triangular matrix with nonzero diagonal entries. Then in particu-
lar, c1 ̸= 0, so {c1} is a linearly independent set. And if {c1, . . . , ck} is linearly
independent for any integer 1 ≤ k ≤ n − 1, then {c1, . . . , ck+1} is also linearly
independent, because ck+1 has a nonzero entry in row k + 1 where the other
column vectors c1, . . . , ck have zeros and so no linear combination of c1, . . . , ck
equals ck+1. So by induction, {c1, . . . , cn} is linearly independent.

2. At least one nonzero diagonal entry implies non-full rank. If the kth diagonal entry
of an upper triangular matrix is zero, then the first k columns {c1, . . . , ck} have
nonzero entries only in the top k − 1 positions, so they are all contained in the
k − 1-dimensional subspace span{e1, . . . , ek−1} of Coln(F) and can’t be linearly
independent.

The argument for lower triangular matrices is symmetrical.

Proposition. The product of two upper (or lower) triangular matrices is also upper (or lower)
triangular, and the ith diagonal entry in the matrix product is the product of the ith diagonal
entries of the two factors.

Proof. Suppose A and B are upper triangular. Write arc, brc for the entries in row r,
column c of A and B, with arc = brc = 0 whenever r > c. By definition of matrix
multiplication, the entry in row r and column c of AB is

∑n
i=1 aribic. The only terms in

this sum that are possibly nonzero are for values of i with r ≤ i ≤ c. But for below-
diagonal entries r > c, there are no such values of i, and for diagonal entries, then the
only such value of i is r itself, for an entry of arrbrr.

The argument for lower triangular matrices is symmetrical.

Proposition. The inverse of an invertible upper (or lower) triangular matrix is also upper (or
lower) triangular.

Proof. GJE on an invertible upper triangular matrix M involves only two types of
operations: row scaling operations (represented in matrix form by diagonal matri-
ces), to make each diagonal pivot entry equal to 1; and shear operations of the form
ri 7→ ri + λrj , where i < j, to clear entries in column j above the pivot on the diagonal
(since the entries below the pivot are already zero and we don’t need to do anything
with them). These shear operations have upper triangular representations with 1s on
the diagonal and another nonzero entry in row i and column j. So M−1 is the matrix
product of upper triangular matrices, so it must also be upper triangular.

The argument for lower triangular matrices is symmetrical.



4.13. TRIANGULAR MATRICES 141

4.13.3 Rectangular triangular matrices

It is sometimes useful to extend the definition of triangularity to non-square matrices.
The diagonal in non-square matrices descends from the top left corner down and to
the right, but does not meet the bottom left corner. A 4× 3 upper triangular matrix, for
example, has the form 

⋆ ⋆ ⋆
0 ⋆ ⋆
0 0 ⋆
0 0 0


and a lower triangular matrix of the same size has the form

⋆ 0 0
⋆ ⋆ 0
⋆ ⋆ ⋆
⋆ ⋆ ⋆


The product of two non-square lower (or upper) triangular matrices, provided they
have compatible dimensions, is also lower (or upper) triangular. You can prove this
by padding non-square matrices with rows or columns of zeros to make them square:
padding with zeros will keep a triangular matrix triangular.

4.13.4 Forward and back substitution

Systems of equations with triangular matrices of coefficients are especially easy to
solve because instead of processing the whole system, you can simply read a value
of one variable from one equation and use an iterative process of substituting known
variables into other equations to find unknown variables. Consider, for example, the
system

2w−3x +z =−7

x+2y+z = 9

y−z = 8

2z =−6

You could solve this system with GJE on the augmented matrix


2 −3 0 1 −7
0 1 2 1 8
0 0 1 −1 8
0 0 0 2 −6

,

but it’s faster to solve equations from the bottom up, substituting solutions from lower
equations into higher equations, like this:

1. 2z = −6 immediately gives z = −3.

2. Substituting z = −3 into y − z = 8 gives y + 3 = 8 or z = 5.

3. Substituting y = 5 and z = −3 into x+ 2y + z = 8 gives x+ 7 = 9 or x = 2.

4. Substituting x = 2 and z = −3 into 2w− 3x+ z = −7 gives 2w− 9 = −7 or w = 1.
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So the solution is (w, x, y, z) = (1, 2, 5,−3). This procedure of working from the
bottom of a system upward is called back-substitution, and it works because the matrix

of coefficients


2 −3 0 1
0 1 2 1
0 0 1 −1
0 0 0 2

 is upper triangular.

A symmetrical process, forward substitution, is possible for systems with lower tri-
angular coefficient matrices. Consider, for example:

−3w = −3

4w−x = 2

w+x+2y = 13

2x−2y−z= −3.

The matrix of coefficients is the lower triangular matrix
−3 0 0 0
4 −1 0 0
1 1 2 0
0 2 −2 −1


You can solve this system by first finding w = 1 from the first equation, then substi-
tuting w = 1 into the second equation to get 4 − x = 2 (which gives x = 2), then
subsituting both of these values into the third equation to get a value for y, and so on.
(The solution to this system is also (w, x, y, z) = (1, 2, 5, 3).)

If a matrix A can be factored into lower and upper triangular matrices as A = LU
(the next section is about how we can find this factorization), then we can solve Ax =
LUx = b by a two-step process of forward substitution followed by back substitution.
Since x = U−1L−1b, we can first compute L−1b (that is, the vector y such that Ly = b)
by using forward substitution. Then x is simply U−1y; that is, the solution to Ux = y,
and we can find x with back substitution.

4.14 LU decomposition

4.14.1 Defined; algorithm for finding U

With a modified form of Gaussian elimination, you can bring any r×c matrix A into an
upper triangular form U . The row operation matrix R for which RA = U will usually
be a lower triangular r × r matrix with diagonal entries all equal to 1. The inverse
matrix L := R−1 gives a decomposition A = LU , where L is also lower triangular with
diagonal entries all equal to 1 and and U is upper triangular. This decomposition is
called the LU decomposition of A, and it has a practical use in efficiently solving linear
systems with the same coefficients but multiple sets of equation values.

In the ideal case, the modified elimination involves only shear operations with
lower triangular representations, in which multiples of a higher row are added to a
lower row. (In some cases, the procedure may require row swaps, which do not have
triangular representation. We’ll address this complication later.) It runs as follows:
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1. Subtract multiples of the first row of A from every other row so that the only
nonzero entry in the first column is the top left corner. (We’ll discuss later how
to handle row swaps if the top left entry of A is not zero.) Unlike in standard
row reduction, you do not have to scale the first row so that the first entry is 1.
Remember that the matrix representation of the row operation rj 7→ rj + λr1 is
the identity matrix with an additional entry of λ in position (1, j), so the matrix
is lower triangular.

2. Subtract multiples of the second row from the third row and every row below it
(but not the first row), so that the only nonzero entries in the second column are
in the first and second rows. (Again, if the second entry on the diagonal at this
stage is zero, you’ll have to swap rows.)

3. Subtract multiples of the third row from the fourth row and every row below it,
so that the only nonzero entries of the third column are the top three. Continue
in this vein until we reach the last row or the last column.

4.14.2 Example

As an example, consider the matrix

A =

 1 2 −4 3
2 3 7 0
−1 2 −4 5


(the bold entries mark the diagonal). We can use shear operations to turn this into an
upper triangular matrix like this: 1 2 −4 3

2 3 7 0
−1 2 −4 5

 r2 7→r2−2r1−→

 1 2 −4 3
0 −1 15 −6
−1 2 −4 5


r3 7→r3+r1−→

1 2 −4 3
0 −1 15 −6
0 4 −8 8

r3 7→r3+4r2−→

1 2 −4 3
0 −1 15 −6
0 0 52 −16


Let’s designate this resulting matrix U . Note we can also change U back to A with the
row operations (r3 7→ r3 − 4r2), (r3 7→ r3 − r1), (r2 7→ r2 + 2r1), each step of which
reverses one of the steps that moved from A to U .

4.14.3 Methods for finding L

We can determine the matrix L by using an augmented matrix with A on the left and
the identity matrix on the right, as with our matrix inversion algorithm. Alternatively,
we can deduce the entries in L directly from the list of row operations, without keep-
ing an augmented matrix. Note that the equation LU = A shows that L encodes the
sequence of row operations that takes U to A—that is, the reverse of the steps involved
in the decomposition of A.

In this sequence from U to A, we start modifying rows at the bottom of U and
work upwards, and we only modify a row by adding multiples of higher-up rows
that have not yet been modified—that is, the step ri 7→ ri + λrj only occurs while rj
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has not yet been changed and still has the value that it has in U . (This is not true
of working from A to U : in our worked example, for instance, we added a multiple
of r2 to r3 after r2 had already been modified.) So if the steps rk 7→ rk + λ1r1, λk 7→
rk + λ2r2, . . . , rk 7→ rk + λk−1rk−1 all occur in the sequence from U to A, we know that
the kth row of A is rk + λ1r1 + λ2r2 + · · · + λk−1rk−1 where ri is the unmodified ith row
of U . So if LU = A, then the kth row of L gives the coefficients that determine the
kth row of A as a linear combination of the rows of U ; that is, the kth row of L is[
λ1 λ2 · · · λk−1 1 0 · · · 0

]
.

In our example with the sequence of operations (r2 7→ r2−2r1), (r3 7→ r3+r1), (r3 7→
r3 + 4r2) from A to U and the reverse sequence (r3 7→ r3 − 4r2), (r3 7→ r3 − r1), (r2 7→
r2+2r1) from U to A, we can read the off-diagonal entries of L from the row operations:

L =

 1 0 0
2 1 0
−1 −4 1


and you can check for yourself that LU = A.

To summarize, the algorithm for determining an LU decomposition of an m × n
matrix A is the following:

1. Conduct the modified Gaussian elimination of A to U .

2. Set up an m × m matrix L, with entries of 1 on the diagonal and 0 above the
diagonal.

3. If going from A to U requires the row operation ri 7→ ri + λrj , then put −λ into
position (i, j) of L.

This algorithm works as long as the rows of A do not need to be reordered. We’ll
discuss this complication in a bit.

4.14.4 Alternate algorithm for LU decomposition

There’s a way to do LU decomposition without explicit Gaussian elimination. First,
we set up L and U with variables for the unknown entries. L is always square with
diagonal entries 1, and U has the same dimensions as A.

To illustrate this method, let’s use our example matrix from the last section, with
an additional row at the bottom. (Adding a row to A means that the decomposition
A = LU will have additional rows at the bottom of L, but the old rows will remain
unmodified, and U stays the same. To see why this is so, think about which steps in
LU decomposition involve the bottom row of A.)

A =


1 2 −4 3
2 3 7 0
−1 2 −4 5
−6 4 10 −2

 .

Now set up a template for the factors L and U :

L =


1 0 0 0
ℓ21 1 0 0
ℓ31 ℓ32 1 0
ℓ41 ℓ42 ℓ43 1

 U =


u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

 .
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We can find the unknown quantities in each matrix by working top-down, multiplying
each row in L with all the columns in U . Each row gives a system that can be solved
by forward substitution:

1. Multiply the first row of L by each column of U to get the first row of U , which
must equal the first row of A: (u11, u22, u33, u44) = (1, 2,−4, 3). The state of the LU
decomposition is now

L =


1 0 0 0
ℓ21 1 0 0
ℓ31 ℓ32 1 0
ℓ41 ℓ42 ℓ43 1

 U =


1 2 −4 3
0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

 .

2. Multiply the second row of L by each column of U in turn to get the system

ℓ21 = 2

2ℓ21 + u22 = 3

−4ℓ21 + u23 = 7

3ℓ21 + u24 = 0

and solve it by substituting the top equation ℓ21 = 2 into the other three equations
(which is technically a simple example of forward substitution) to get the nonzero
portion of the second row of U : (u22, u23, u24) = (−1, 15,−6). The state of the LU
decomposition is now

L =


1 0 0 0
2 1 0 0
ℓ31 ℓ32 1 0
ℓ41 ℓ42 ℓ43 1

 U =


1 2 −4 3
0 −1 15 −6
0 0 u33 u34

0 0 0 u44

 .

3. Multiply the third row of L by each column of U in turn to get the system

ℓ31 = −1

2ℓ31 − ℓ32 = 2

−4ℓ31 + 15ℓ32 + u33 = −4

3ℓ31 − 6ℓ32 + u34 = 5

We can solve this system with forward substitution. First put ℓ31 = −1 into the
second equation to get ℓ32 = −4, then put both ℓ31 = −1 and ℓ32 = −4 into the next
two equations to get u33 = 52 and u34 = −16. The state of the LU decomposition
is now

L =


1 0 0 0
2 1 0 0
−1 −4 1 0
ℓ41 ℓ42 ℓ43 1

 U =


1 2 −4 3
0 −1 15 −6
0 0 52 −16
0 0 0 u44

 .
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4. Multiply the fourth row of L by each column of U to get

ℓ41 = −6

2ℓ41 − ℓ42 = 4

−4ℓ41 + 15ℓ42 + 52ℓ43 = 10

3ℓ41 − 6ℓ42 − 16ℓ43 + u44 = −2

This system, again, can be solved by forward substitution to get (ℓ41, ℓ41, ℓ43, u44) =
(−6,−13, 113

26
,−136

13
), giving a final decomposition

L =


1 0 0 0
2 1 0 0
−1 −4 1 0
−6 −13 113

26
1

 U =


1 2 −4 3
0 −1 15 −6
0 0 52 −16
0 0 0 −136

13

 .

4.14.5 Computational advantages of LU decomposition

LU decomposition to solve a linear system with forward and back substitution can be
significantly faster than Gauss–Jordan elimination. On an n× n matrix, the amount of
computation required by GJE scales with n3 (in computer science jargon, GJE requires
O(n3) time): each row operation requires a separate operation for each entry (so n
operations in total), clearing the non-pivot entries in each column can take up to n row
operations, and there are n columns.

Solving a triangular system with forward or back substitution, on the other hand,
requires only O(n2) operations: for every integer 1 ≤ k ≤ n − 1, we have to substitute
k known variable values into the equation with k+1 variables and then carry out k−1
multiplication and subtraction steps to isolate the unknown variable. So if you have to
solve an equation of the form Ax = b repeatedly for a fixed coefficient matrix A and
many different values b, then the preprocessing time required to factor A = LU (which
can be done in O(n3) time) can save time overall.

LU decomposition also has advantages over directly computing A−1 and then A−1b.
Theoretically, computing A−1 via GJE also takes O(n3) time, and then computing A−1b
takes O(n2) time for each vector b, the same amortized time requirements as LU de-
composition. But there are practical drawbacks to matrix inversion. First, it’s numeri-
cally unstable: rounding errors can accumulate, creating inaccuracies in floating-point
computer systems that can represent most non-integer values only approximately. Ma-
trices in scientific computing are also frequently sparse: most of their entries are zero.
Software libraries can store sparse matrices in compact forms that don’t require mem-
ory for every entry. LU decomposition on sparse matrices can create a factorization
into sparse matrices, but the inverse of a sparse matrix is generally not sparse and
could require prohibitive amounts of memory to store.

Take, for instance, the case of matrices with a small bandwidth b: every nonzero
entry is located at most b places horizontally or vertically from the diagonal (that is,
position (r, c) is nonzero only if |r, c| ≤ b). On such a matrix, LU decomposition takes
only O(b2n) operations. Each of the n columns has at most b below-diagonal entries
that require one shear operation each to clear. By the time we do a shear operation of
the form ri 7→ ri + rj , all of the left-of-diagonal entries in rj have been cleared, so if we
started with a matrix with bandwidth b, rj can have at most b + 1 nonzero entries and
carrying out the row operation requires only O(b) time. Furthermore, the necessary
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shear operations ri 7→ ri+rj wil always have j+1 ≤ i ≤ j+b, so the resulting matrices
L and U will also only have bandwidth b.

4.14.6 LDU decomposition

LU decomposition has an annoying asymmetry: L is unitriangular (that is, it has diag-
onal entries of 1), but U is not. But we can make the factorization more symmetrical
if A is invertible. In this case, the entries on the diagonal of U are all nonzero, and we
can divide every row in U by its entry on the diagonal to get an upper unitriangular
matrix. The diagonal entries of U go into a separate diagonal matrix notated D, and
the overall decomposition is called an LDU decomposition.

For example, the LU decomposition from the last section
1 2 −4 3
2 3 7 0
−1 2 −4 5
−6 4 10 −2

 =


1 0 0 0
2 1 0 0
−1 −4 1 0
−6 −13 113

26
1



1 2 −4 3
0 −1 15 −6
0 0 52 −16
0 0 0 −136

13


can be recast as this LDU decomposition:

1 2 −4 3
2 3 7 0
−1 2 −4 5
−6 4 10 −2

 =


1 0 0 0
2 1 0 0
−1 −4 1 0
−6 −13 113

26
1



1 0 0 0
0 −1 0 0
0 0 52 0
0 0 0 −136

13



1 2 −4 3
0 1 −15 6
0 0 1 − 4

13

0 0 0 1

 .

The LDU decomposition of an invertible matrix, if it exists, is unique. We won’t give a
formal proof, but uniqueness shouldn’t be surprising if you note that the algorithm of
section 4.14.4 for determining the entries of L and U never creates an underdetermined
system.

4.14.7 LU decomposition with row exchanges

Some invertible matrices do not have LU decompositions. Consider the LU decompo-
sition problem

A =

0 2 −2
1 5 −3
4 7 1

 =

 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

u11 u12 u13

0 u22 u23

0 0 u33

 = LU.

If we try to find the unknown entries of L and U , we quickly run into trouble. The top
left entry of A requires u11 = 0, for instance, but the entry in position (2, 1) requires
u11ℓ21 = 1.

It doesn’t help if we relax the requirement that L have diagonal entries of 1. If we
set up the decomposition as

A =

0 2 −2
1 5 −3
4 7 1

 =

ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33

u11 u12 u13

0 u22 u23

0 0 u33

 = LU

instead, then the top left entry is ℓ11u11 = 0. Either ℓ11 or u11 must be zero. We ran into
problems with u11 = 0, so let’s try ℓ11 = 0 instead. But now the entry in position (1, 2)
requires ℓ11u12 = 2, which is also impossible.
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The basic problem is that since A has full rank, both L and U must also have full
rank, so they can’t have any zeros on the diagonal. If we used the alternate method of
computing U through modified Gaussian elimination, we would have found that we
can’t clear entries in the first column by subtracting multiples of the first row, because
the first row has a zero in the first column.

These problems can arise in rows beyond the first, as well. For example, consider
the matrix

A =


1 2 −4 3
2 4 −3 7
0 −6 3 −10
−5 −8 19 −11


Let’s work out U with modified Gaussian elimination. We’ll clear the first column with
r2 7→ r2 − 2r1 and r4 7→ r4 + 5r1 to get

1 2 −4 3
0 0 5 1
0 −6 3 −10
0 2 −1 4


We run into a familiar problem in the second column: there are entries that need to
be cleared, but there is a zero in the pivot position on the diagonal. Let’s fix this by
swapping the second and fourth rows, r2 ↔ r4, getting

1 2 −4 3
0 2 −1 4
0 −6 3 −10
0 0 5 1

 .

Then we can clear the second column with r3 7→ r3 + 3r2, giving
1 2 −4 3
0 2 −1 4
0 0 0 2
0 0 5 1

 .

Again, we have a zero in the pivot position in the third row, but now we only have to
swap r3 ↔ r4, and we’re done: 

1 2 −4 3
0 2 −1 4
0 0 5 1
0 0 0 2

 .

This is upper triangular, but it isn’t quite the U factor in A = LU , as A doesn’t have an
LU factorization in the first place. Instead, it’s the U factor for a matrix, call it A′, cre-
ated by rearranging the rows of A. We could write A′ = PA where P is a permutation
matrix—that is, an n× n matrix with n entries of 1, one in each row and each column,
and all other entries zero.

How can we reconstruct the matrices P and L from the sequence of row operations
that we needed to construct U? In constructing U , we mixed shear operations and row
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swaps, but we can rearrange any sequence of swaps and shears to get an equivalent
sequence with all the swaps in the front, and glean elements of L directly from the
resulting sequence. In LU decomposition, we only use row j to modify other rows
through shear operations after it has been swapped into the right place, and all subse-
quent swaps involve rows with numbers greater than j. That is, if we have a sequence
of a shear ri 7→ ri+λrj followed by a swap rk ↔ rℓ, then j must be strictly greater than
all three of i, k, ℓ.

We can interchange a shear with an adjacent swap by noting that the sequence
of ri 7→ ri + λrj followed by ri ↔ rk is equivalent to ri ↔ rk followed by rk 7→
rk + λrj , in which both the old and the new shear operations involve modifying a
higher-numbered row rk or ri using a lower-numbered row rj .

This will be clearer if we look at the sequence of row operations that go from A to
U :

(r2 7→ r2 − 2r1) → (r4 7→ r4 + 5r1) → (r2 ↔ r4) → (r3 7→ r3 + 3r2) → (r3 ↔ r4).

As (ri 7→ ri + λrj) → (ri ↔ rk) and (ri ↔ rk) → (rk 7→ rk + λrj) are equivalent, we can
move (r2 ↔ r4) to the front while changing any r2 in the rules that it moves past to r4
and vice versa, giving

(r2 ↔ r4) → (r4 7→ r4 − 2r1) → (r2 7→ r2 + 5r1) → (r3 7→ r3 + 3r2) → (r3 ↔ r4).

Then moving (r3 ↔ r4) forward gives

(r2 ↔ r4) → (r3 ↔ r4) → (r3 7→ r3 − 2r1) → (r2 7→ r2 + 5r1) → (r4 7→ r4 + 3r2).

Note that once a step of the form ri 7→ ri + λrj takes place—that is, once the below-
diagonal entries in column j are cleared—then all subsequent row exchanges involve
rows strictly below j: a sequence of the form (ri 7→ ri + λrj) → (rj ↔ rk) never occurs.
This means that even after rearrangement of the row operations, all steps of the form
ri 7→ ri + λrj will still have j < i, allowing us to read a lower triangular matrix off of
them.

In any case, the first two steps of this new procedure from A to U accomplish a
reordering of the bottom three rows of A, sending r2 7→ r3 7→ r4 7→ r2. The resulting
matrix is

A′ =


1 2 −4 3
−5 −8 19 −11
2 4 −3 7
0 −6 3 −10


The remaining three steps show how to get from from A′ to U . The matrix L such that
A′ = LU can be read off this sequence of steps:

L =


1 0 0 0
−5 1 0 0
2 0 1 0
0 −3 0 1


This factorization with initial row reordering is sometimes called a PA = LU factor-
ization or an LU factorization with partial pivoting.6 P is the permutation matrix that

6Full pivoting includes column rearrangements as well.
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induces the necessary reordering of the rows of A. In this case,
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0




1 2 −4 3
2 4 −3 7
0 −6 4 −10
−5 −8 19 −11

 =


1 0 0 0
−5 1 0 0
2 0 1 0
0 −3 0 1



1 2 −4 3
0 2 −1 4
0 0 5 1
0 0 0 2

 .

Unlike reduction to RREF, LU decomposition depends on the choice of row trans-
positions: different choices of P can drastically change L and U . Suppose that in the
factorization of our matrix A above, once we had done r2 7→ r2 − 2r1 and r4 7→ r4 + 5r1
to get 

1 2 −4 3
0 0 5 1
0 −6 3 −10
0 2 −1 4


we swapped r2 ↔ r3 rather than r2 ↔ r4, getting

1 2 −4 3
0 −6 3 −10
0 0 5 1
0 2 −1 4


In this case, the only remaining step to turn this matrix into upper-triangular form is
r4 7→ r4 +

1
3
r2, giving

U =


1 2 −4 3
0 −6 3 −10
0 0 5 1
0 0 0 2

3


The sequence of steps from A to U , namely

(r2 7→ r2 − 2r1) → (r4 7→ r4 + 5r1) → (r2 ↔ r3) → (r4 7→ r4 +
1

3
r2)

can be rearranged to put all transpositions at the front:

(r2 ↔ r3) → (r3 7→ r3 − 2r1) → (r4 7→ r4 + 5r1) → (r4 7→ r4 +
1

3
r2).

The resulting L factor can be read from this sequence of steps,
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 2 −4 3
2 4 −3 7
0 −6 3 −10
−5 −8 19 −11

 =


1 0 0 0
0 1 0 0
2 0 1 0
−5 −1

3
0 1



1 2 −4 3
0 −6 3 −10
0 0 5 1
0 0 0 2

3


Finall, since row exchanges are equivalent to simply changing the order of equa-

tions in the corresponding linear system, they don’t affect the solution to the system.
Ax = b can be solved by choosing a permutation matrix P , decomposing PA = LU ,
and then solving LUx = Pb.



Chapter 5

Matrix and operator determinants

5.1 Motivating intuition: determinant as volume

Suppose F is a field and V is a finite-dimensional vector space over F. The determinant
of a linear operator T ∈ End(V ), or a matrix representation of T , is a single element
of F that indicates (to put it intuitively) the factor by which T changes the volume of
subsets of V .

An operator’s determinant tells you several important facts about the operator:
most importantly, whether it is bijective. Determinants will also let us build a theory of
eigendecompositions of linear operators into simpler operators on invariant subspaces.
We’ll cover this in the next chapter.

Determinants most clearly have a geometric meaning for operators on Rn, which
can be interpreted as transformations of Euclidean space, such as dilations, compres-
sions, and rotations, that preserve the location of the origin and map straight lines to
straight lines. Since T is linear, we can divide any reasonably shaped subset of Rn into
a set of infinitesimally small hypercubes, each of which gets scaled by the same factor.

For instance, the image of the unit hypercube {c1e1 + · · · + cnen : 0 ≤ c1, . . . , cn ≤
1} ⊂ Rn under T is generally a skewed cube or “parallelepiped“ {c1Te1 + · · ·+ cnTen :
0 ≤ c1, . . . , cn ≤ 1}. If we scale up the unit hypercube by a factor λ and then translate
it by a vector v, then the image of the resulting hypercube {v + c1λe1 + · · · + cnλen :
0 ≤ c1, . . . , cn ≤ 1} is a correspondingly translated and resized version of the image of
the unit hypercube. So there’s some factor k such that for all subsets S ⊂ Rn with a
finite and definable1 volume v, the set T (S) has volume kv. (If T has nonzero kernel,
then it flattens any input into a space with fewer than n dimensions and volume zero,
so k = 0.)

The determinant of T is simply this number k. At first, we’ll define and prove
several properties of a determinant for square matrices, and then define the determinant
of a linear operator T ∈ Hom(Fn) to be the determinant of the matrix representation
of T relative to the standard basis. There’s nothing special about the standard basis:
all similar matrices have the same determinant. But the proof that the determinant of
a linear transformation is independent of its matrix representation will have to wait
until the next chapter.

For now, let’s work through the geometric intuition of determinants in a simple,
easily visualized setting: linear transformations of the Cartesian plane T : R2 → R2.

1One standard exercise in real analysis classes is constructing a subset of Rn with a structure so
complex that it doesn’t have a definable volume, either zero or nonzero.
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The four points {(0, 0), (0, 1), (1, 0), (1, 1)} form a square with area 1. If T is bijective,
then {T (0, 0), T (0, 1), T (1, 0), T (1, 1)} form the four vertices of a parallelogram (and, of
course, T (0, 0) = (0, 0)). The area of this parallelogram is the factor by which T scales
the volume of every input set. Furthermore, every permutation can either preserve
orientation—that is, the output is a stretched, skewed, or rotated version of the input—
or reverse orientation: that is, the output is a distortion of the input’s mirror image.

Define the determinant of T , denoted detT , to be the area of this parallelogram if
T preserves orientation, or the negative area of the parallelogram if T reverses orien-
tation. First, we’ll look at several examples of linear transformations on R2 and figure
out what their determinants have to be from geometric considerations; then we’ll work
out a general formula for the determinant.

Consider this drawing of the Cartesian plane:

The unit square is highlighted, and the two standard basis vectors are also shown:
e1 = (1, 0) in red with a single arrowhead and e2 = (0, 1) in blue with a double arrow-
head. The capital F in the unit square shows orientation more clearly.

Let’s consider what this picture looks like if we put it through a few different linear
transformations.

1. T (x, y) = (2x, y), matrix representation with respect to the standard basis
[
2 0
0 1

]
:

Here, T stretches the x-axis by a factor of 2 while leaving the y-axis unchanged,
increasing all areas by a factor of 2. so detT = 2

2. T (x, y) = (2x, 2y), matrix representation with respect to the standard basis2

[
2 0
0 2

]
:

2We’ll stop writing the phrase “with respect to the standard basis” explicitly for the rest of this chap-
ter, but remember that it’s still there implicitly.
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T is a uniform scaling in all directions by 2, and detT = 4.

3. T (x, y) = (x+ 1
2
y, y), matrix representation3

[
1 1

2

0 1

]
:

This is a shear mapping, in which points are moved parallel to one axis by a
distance proportional to their coordinates on another axis. The determinant of
this transformation is 1: shear transformations preserve area.

4. T (x, y) = (2x+ y, 2y), matrix representation
[
2 1
0 2

]
:

This is a uniform scaling by a factor of 2 composed with the shear transformation
(x, y) 7→ (x+ 1

2
y, y) from the previous example. (The composition can be done in

either order: every transformation commutes with uniform scalings, just as every

3Again, “with respect to the standard basis” is implied for the rest of this section.
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matrix commutes with a scalar multiple of the identity matrix). The determinant
is 4.

5. T (x, y) = (−x, y), matrix representation
[
−1 0
0 1

]
:

This is a reflection over the y-axis. The image of the unit square is also a square of
area 1, but its orientation is reversed: note that the F appears backwards, and that
the angle from Te1 to Te2 is clockwise, not counterclockwise. The determinant is
−1.

6. T (x, y) = (−y, x), matrix representation
[
0 −1
1 0

]
:

This is a rotation 90 degrees counterclockwise. The image of the unit square
occupies the same area as it does under the transformation (x, y) 7→ (−x, y), but
in this case, area is preserved. The determinant is 1.

7. T (x, y) = (−x,−y), matrix representation
[
−1 0
0 −1

]
:
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This can be interpreted either as a rotation by 180 degrees or as two reflections
about perpendicular axes. The determinant is 1.

8. T (x, y) = (y, x), matrix representation
[
0 1
1 0

]
:

Swapping the two axes is equivalent to reflection over the line y = x, so this
transformation has determinant −1.

9. T (x, y) = (x− y, x+ y), matrix representation
[
1 −1
1 1

]
:

This is equivalent to rotation clockwise by 45 degrees followed by a uniform scal-
ing by a factor of

√
2 in all directions, so the determinant is 2.

10. T (x, y) = (−3x+ 2y,−x), matrix form
[
−3 2
−2 −1

]
:
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This transformation preserves orientation. The area of the shaded parallelogram
is 7 (you can see this for yourself by considering the rectangle withe corners
(−3,−3), (−3, 0), (2, 0), (2,−3), which contains the parallelogram and four un-
shaded triangles, and then subtracting the areas of the triangles).

11. T (x, y) = (2x− 3y,−x− 2y), matrix form
[
2 −3
−1 −2

]
:

The matrix form of this transformation comes from reversing the columns of the

matrix in example 10, or, equivalently, right-multiplying by
[
0 1
1 0

]
:

[
2 −3
−1 −2

]
=

[
−3 2
−2 −1

] [
0 1
1 0

]
.

The matrix
[
0 1
1 0

]
represents reflection over the line y = x, which swaps the

vectors e1 and e2, so the image of the unit square is the same as the image of the
unit square in example 10, except that the two basis vector images are reversed.
The orientation here is reversed, as one expects from the the composition of a
reflection and an orientation-preserving transformation. The determinant is −7.
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12. T (x, y) = (−2x− y,−3x+ 2y), matrix form
[
−2 −1
−3 2

]
:

The matrix form of this example is the same as the matrix form of example 10, but
with the rows swapped—or, equivalently, with the whole matrix left-multiplied

by
[
0 1
1 0

]
: [

−2 −1
3 −2

]
=

[
0 1
1 0

] [
3 −2
−2 1

]
.

This corresponds to applying the transformation in example 10 and then reflect-
ing the resulting figure over the line y = x. The determinant of this figure is
−7.

13. T (x, y) = (x− 2y,−x+ 2y), matrix form
[
1 −2
−1 2

]
:

This transformation collapses all of R2 onto a one-dimensional subspace: the line
y = −x. Lines have no area, so the determinant is zero.

In all these cases, the determinant of the matrix
[
a b
c d

]
is ad − bc. You can prove

geometrically that the area of a parallellogram with corners (0, 0), (a, c), (b, d), (a+b, c+
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d) is, in fact, |ad − bc|, and that the image (b, d) of e2 is located less than 180 degrees
counterclockwise from the image (a, c) of e1 (thereby preserving orientation) if and
only if ad − bc > 0. (Hint for proving this yourself: inscribe the parallelogram in a
rectangle with sides parallel to the coordinate axes, with the area inside the rectangle
but outsie the parallelogram divided into four triangles, You may need to consider a
few different cases depending on the signs of a, b, c, d.)

The geometric interpretation of the determinant is harder to visualize in higher
dimensions and typically nonsensical for fields other than R or Q, so to give a general
definition of the determinant, we’ll want a purely algebraic formula with properties
that correspond to the geometric ones that we just explored. It turns out that there’s
exactly one function from Matn×n(F) to F can satisfy all these properties:

1. The determinant should be multiplicative: det(AB) = (detA)(detB), because
applying the map B first and then A should affect volumes the same way as ap-
plying AB all at once. A corollary: either every matrix has determinant 0 (and
property 3 in this list rules out this possibility) or the identity matrix I has deter-
minant 1, because detA = det(AI) = detA det I .

2. The determinant of any matrix with an entire row of zeros should be 0, be-
cause such matrices flatten their inputs into a smaller-dimensional (and thus
zero-volume) output space that omits all the dimensions corresponding to rows
of zero.

3. The matrices that represent elementary row transformations, all of which have
clear geometric interpretations, should have the following determinants:

(a) Row swap matrices should have determinant −1, as the linear transforma-
tions that they represent simply swap two standard basis vectors—that is,
they reflect across the line (or plane, or hyperplane) that bisects the angle
between them. The matrix representation for r1 ↔ r2 in R3, for instance,

is

0 1 0
1 0 0
0 0 1

, which simply interchanges e1 and e2—that is, it’s a reflection

across the plane x = y.

(b) Row scaling matrices should have determinant equal to the scaling factor. The

scaling r1 7→ −2r1 in R3, for instance, has matrix representation

−2 0 0
0 1 0
0 0 1

,

which simply reflects any input set across the plane x = 0, thereby reversing
its orientation, and then stretches it by a factor of 2. (One corollary is that
the identity matrix should have determinant 1.)

(c) Shear matrices should have determinant 1, because they map the unit square
(or cube, or hypercube) to a parallelogram (in the two-dimensional case)
or, for n ≥ 3 dimensions, to a prism or hyperprism with n − 2 of its di-
mensions all perpendicular to a parallelogram base with area 1. The shear

r1 7→ r1 + 2r2 in R3, for instance, is represented by

1 2 0
0 1 0
0 0 1

. This trans-

formation preserves e1 and sends e2 to (2, 1, 0), so the images of e1 and e2
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form a parallelogram with vertices (0, 0, 0), (1, 0, 0), (2, 1, 0), (3, 1, 0) and area
1, and the image of the unit cube is a prism with this parallelogram as a base
and height 1 along the z-axis.

It’s easy to prove that if the determinant exists, it has to be unique:

Proposition. There is at most one function from Matn×n(F) to F that satisfies all these re-
quirements.

Proof. Every square matrix can be factored into its RREF (which, for square matrices,
either equals the identity matrix or has a row of zeros) times zero or more elementary
row operation matrices. Our requirements specify determinants for the identity ma-
trix, matrices with zero rows, and elementary row operation matrices, and they also
specify that the determinant of a matrix product is the product of the determinants of
the individual matrix factors.

We haven’t proved yet that a function with all these properties actually exists. But
it turns out that it does exist, and we can give an explicit formula for it: it’s a particular

sum of products of matrix entries that does, in fact, reduce to det

[
a b
c d

]
= ad − bc

for the two-dimensional case. The entries and coefficients of each term in the sum are
chosen using a set of functions called permutations: bijective functions from the integers
{1, . . . , n} to themselves. Before we can present the formula, we should study some of
the properties of permutations in isolation.

5.2 Elements of the theory of permutations

5.2.1 Definition and basic properties

A permutation on the set of integers {1, . . . , n} is a bijective function σ : {1, . . . , n} →
{1, . . . , n}. (The Greek letters sigma σ and tau τ are conventional for permutations,
just like x and y conventionally mean real numbers, m and n mean integers, f and g
mean general functions, and so on.) “Bijective,” remember, means that there are no two
distinct integers i ̸= j such that σ(i) = σ(j), and (equivalently) for every k ∈ {1, . . . , n},
there is exactly one i such that σ(i) = k. (Any function from a finite set to itself has to
be both injective and surjective or neither: we can’t cover n outputs with n inputs if
two of the inputs have the same output.)

As a simple example, the function σ : {1, 2, 3, 4} → {1, 2, 3, 4} with values σ(1) =
3, σ(2) = 2, σ(3) = 4, σ(4) = 1 is a permutation: every integer from 1 to 4 occurs once
as a value of σ. But σ(1) = 3, σ(2) = 3, σ(3) = 4, σ(4) = 1 is not a permutation, because
3 appears twice as a value, and 2 isn’t a value of σ at all.

The set of all permutations on {1, . . . , n} is denoted Sn. The size of Sn is n!, the facto-
rial of n: if you construct a permutation σ by choosing each of the values σ(1), . . . , σ(n)
in turn, then you have n choices for σ(1), then n − 1 possible choices for the value of
σ(2) (that is, all of {1, . . . , n} except for σ(1)), then n − 2 choices for the value of σ(3),
and so on.
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Remember that the composition of two bijective functions is also bijective,4 and
that any bijective function has an inverse. This means that the functional inverse of
any permutation is also a permutation. The composition of any permutation with its
inverse is the identity permutation (sometimes denoted ι, Greek iota), which maps
every input to itself.

The existence of permutation inverses proves a “cancellation law” for permutation
composition:

Proposition. If σ1 and σ2 are different elements of Sn, then τ ◦ σ1 and τ ◦ σ2 are also different
for any fixed τ , as are σ1 ◦ τ and σ2 ◦ τ . (Equivalent phrasing: for any fixed τ ∈ Sn, the maps
σ 7→ τ ◦ σ and σ 7→ σ ◦ τ are bijections from Sn to itself.)

Proof. If τ ◦ σ1 = τ ◦ σ2, then τ−1 ◦ (τ ◦ σ1) must equal τ−1 ◦ (τ ◦ σ2). But τ−1 ◦ (τ ◦ σ1) =
(τ−1 ◦ τ) ◦ σ1 = σ1 and likewise τ−1 ◦ (τ ◦ σ2) = σ2, because function composition is
associative, so σ1 = σ2. That is, the map σ 7→ τ ◦ σ is a bijection from Sn to itself.

Similar reasoning also shows that σ 7→ σ ◦ τ is a bijective map from Sn to itself.

The cancellation law will be vital for proving facts about determinants because the
determinant is defined as a particular sum over elements of Sn. Several proofs of prop-
erties of the determinant start with a sum of some formula with a variable σ that ranges
over elements of Sn, and end with a similar formula in which σ is replaced with σ◦τ or
τ ◦σ for some fixed permutation τ . We can use the fact that if σ takes on every value of
Sn in a sum, then so does σ ◦ τ , so the terms in these two sums correspond one-to-one.

5.2.2 Permutation parity

The “parity” or “sign” of a permutation σ is a somewhat strange formula whose value
is either 1 or −1. It’s hard to explain at first why parity is useful, so let’s just define it.

If {i, j} is a two-element subset of {1, . . . , n}, we’ll say that a permutation σ ∈ Sn

inverts {i, j} if i < j but σ(i) > σ(j). We’ll define a permutation that inverts an even
number of two-element subsets to have even parity (this includes the identity permu-
tation σ(i) = i for all 1 ≤ i ≤ n, which inverts zero pairs, because zero is even). A
permutation that inverts an odd number of pairs has odd parity. The sign of a permu-
tation is often denoted sgn(σ) or, confusingly, (−1)σ, and has the value (again, perhaps
confusingly) 1 if σ has even parity or −1 if σ has odd parity. (We’ll just use the sgn(σ)
notation in this book.)

The motivation for the names “even” and “odd” comes from a result that makes
composition of permutations analogous to addition of even and odd numbers (or mul-
tiplication of positive and negative numbers):

Proposition. The composition of two permutations of the same parity (i.e. both odd or both
even) is even, and the composition of two permutations of opposite parity is odd. To put it more
succinctly, sgn(σ ◦ τ) = sgn(σ) sgn(τ).

Proof. Take σ, τ ∈ Sn. Denote by Pn the set of two-element subsets of {1, . . . , n}. Divide
Pn into four disjoint subsets:

4If f : X → Y and g : Y → Z are injective, then x1 ̸= x2 ∈ X implies f(x1) ̸= f(x2) ∈ Y , which
implies (g ◦ f)(x1) ̸= (g ◦ f)(x2) ∈ Z, so g ◦ f is also injective. Similarly, the image of g ◦ f is the image
of g|im f (that is, g with domain restricted to the image of f ), so if f and g are both surjective, then so is
g ◦ f ).
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• A ⊆ Pn is the set of sets {i, j} such that σ inverts {i, j} and τ inverts {σ(i), σ(j)}.

• B ⊆ Pn is the set of sets {i, j} such that σ inverts {i, j} and τ doesn’t invert
{σ(i), σ(j)}.

• C ⊆ Pn is the set of sets {i, j} such that σ doesn’t invert {i, j} and τ inverts
{σ(i), σ(j)}.

• D ⊆ Pn is the set of sets {i, j} such that σ doesn’t invert {i, j} and τ doesn’t invert
{σ(i), σ(j)}.

The number of pairs inverted by σ is |A| + |B|, and the number of pairs inverted
by τ is |A| + |C|. (Remember that σ is a bijection, so for every two-element set {k, ℓ}
there is exactly one set {i, j} such that {σ(i), σ(j)} = {k, ℓ}: that is, the sets {{i, j} ∈
Pn : τ inverts {σ(i), σ(j)}} and {{k, ℓ} ∈ Pn : τ inverts {k, ℓ}} have the same size.)

The number of inversions of τ ◦ σ, meanwhile, is |B| + |C|. The sum (|A| + |B|) +
(|A| + |C|) + (|B| + |C|) = 2|A| + 2|B| + 2|C| is even, so |B| + |C| is even (that is, τ ◦ σ
is even) if |A|+ |B| and |A|+ |C| are both even or both odd (that is, if σ and τ have the
same parity) and odd otherwise.

Corollary. Every transposition has the same sign as its inverse.

Proof. The composition of any permutation and its inverse is ι, which has zero inver-
sions and is even. (Alternatively: σ inverts {i, j} if and only if σ−1 inverts {σ(i), σ(j)}.)

Finally, if τ is a transposition that swaps two values of {1, . . . , n}—that is, such that
τ(i) = i for every value except two values k and ℓ, for which τ(k) = ℓ and τ(ℓ) = k—
then we call τ a transposition.

Proposition. Transpositions are always odd.

Proof. If a transposition τ swaps i and j, then it inverts {i, j} itself, but it also inverts
{i, k} and {k, j} for each of the |j − i| − 1 integers k that lie between i and j. It doesn’t
invert any other integer pair. So τ inverts 2|j − i| − 1 pairs, so it’s odd.

Finally, note that if τ is an odd permutation, then σ 7→ σ ◦ τ is a bijection on Sn

that takes every even permutation to an odd permutation, and vice versa. So if Sn has
at least one odd permutation (that is, if n ≥ 2), then it has the same number of even
permutations as odd permutations: n!/2 of each, to be precise. (In abstract algebra, the
set of even permutations on {1, . . . , n} is sometimes called the alternating group on n
elements and denoted An, and the set of all permutations is the symmetric group.)

5.2.3 Decomposition of permutations into cycles

We can decompose any permutation σ into a set of disjoint cycles, in which σ(i) is the
element that immediately follows i in the cycle that contains i. Consider, for example,
the element of S11 whose values are given by the table below:

n 1 2 3 4 5 6 7 8 9 10 11
σ(n) 4 5 1 9 7 11 2 6 3 10 8
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This permutation σ sets up a cycle 1 → 4 → 9 → 3 → 1 with four elements, two
cycles 2 → 5 → 7 → 2 and 6 → 11 → 8 → 6 with three elements each, and a trivial
cycle with one element sending 10 to itself. So σ could be written as a composition
of cycles, using special notation in which each cycle is notated within parentheses, as
(1 4 9 3)(2 5 7)(6 11 8), or as (1 4 9 3)(2 5 7)(6 11)(10) explicitly including the trivial cycle.

Every length-k cycle can be split into a composition of k − 1 transpositions. For
example, (1 2 3 · · · k) can be decomposed as (1 k)(1 k− 1) · · · (1 4)(1 3)(1 2), where com-
position goes from right to left: first send 1 to 2 and vice versa, then send the resulting
1 (produced from the original 2) to 3 and vice versa, and so on. So a permutation
consisting solely of a length-k cycle is even if k is odd, and odd if k is even.5

A permutation with multiple cycles, furthermore, is the composition of its con-
stituent cycles, and each even-length cycle changes the parity of the permutation while
each odd-length cycle leaves it the same. So a permutation with an odd number of
even-length cycles is odd, while a permutation with an even number of even-length
cycles is even. The permutation σ ∈ S11 above, for example, is a composition of one
odd permutation (the length-4 cycle (1 4 9 3)) and three even permutations (the length-
3 cycles (2 5 7) and (6 11 8), and the trivial length-1 cycle (10)), so it is odd.

One final small observation: in a cycle, anything that goes up must come back
down. The entries in a cycle cannot grow indefinitely: any cycle of length 2 or more
contains some integer i that is smaller than its successor: that is, such that i < σ(i).
So the only element of Sn that satisfies σ(i) ≤ i for all i is the identity permutation
σ(i) = i, which is a composition of n length-1 cycles. The same reasoning shows that
the identity permutation is the only permutation that satisfies (∀i)σ(i) ≥ i. This point is
the key to establishing a vital fact about the determinants of triangular matrices. We’ll
get to this in a bit.

5.3 Multilinear, symmetric, and alternating functions

Before continuing with determinants, it’s worth presenting a few key concepts in a
cleaner, more abstract context without messy matrix notation. The main concept is
that of multilinear maps that take multiple inputs from V and return one output in W ,
and are linear maps when every argument but one is fixed to an arbitrary value and
the one remaining argument is allowed to vary over elements of V . We’ll see what this
means more precisely soon.

5.3.1 Partial function application

First, though, we’ll need a short detour into more basic function concepts and notation.
Suppose X and Y are arbitrary sets, and suppose f : Xn → Y is a function that takes
n inputs in X and returns one output in Y . If we choose fixed values for all the inputs
to f except one, then we can get another function whose input is a single element in X
and whose output is the value of f generated by inserting the new output into the slot
left vacant by the outputs that we’re holding fixed. In other words, we’re creating a

5As with general function compositions, composition of permutations is generally not commutative:
for instance, (1 2)(1 3) = (1 3 2) but (1 3)(1 2) = (1 2 3). Disjoint cycles, however, do commute, so the
order in which we write a permutation’s decomposition into disjoint cycles doesn’t matter.
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new function f through “partial application”: choosing some inputs to f as fixed and
letting the remaining input be an argument to a single-input function.

As a more familiar example, consider the function f : R2 → R with formula
f(x, y) = x3 + 2xy. We could use this formula to get a new function of x alone by
choosing a fixed value for y (say, y = 3) and letting x vary. This new function would
be the map x 7→ f(x, 3) = x3 +6y, and you’ll often see this denoted with the shorthand
notation f(·, 3), with a dot denoting the missing input to be filled in later. Alterna-
tively, we could get a function of y alone by choosing a fixed value for x (say, x = −2),
creating the map y 7→ −4y − 8, which we could denote f(−2, ·).

5.3.2 Multilinear functions defined

We have a special term for functions in vector spaces in which these partial application
maps are always linear:

Definition. Suppose f : V n → W is a function that takes n inputs in a vector space V and
outputs a single element of another vector space W . Then f is multilinear if all of the partial
application maps f(·,v2,v3, . . . ,vn), f(v1, ·,v3, . . . ,vn), and so on up to f(v1, . . . ,vn−1, ·)
are ordinary linear maps from V to W , for all values of the fixed inputs v1, . . . ,vn.

For instance, if n = 3 and F is the base field for V and W , then f : V 3 → W is
multilinear if all three of these axioms hold:

1. f(·,v2,v3) is linear for all v2,v3 ∈ V . For a map to be linear, it must satisfy the
usual two axioms:

• Respect for addition: f(v1 + v′
1,v2,v3) = f(v1,v2,v3) + f(v′

1,v2,v3) for all
v1,v

′
1,v2,v3 ∈ F.

• Respect for multiplication: f(cv1,v2,v3) = cf(v1,v2,v3) for all v1,v2,v3 ∈ V
and c ∈ F.

2. f(v1, ·,v3) is linear for all v1,v3 ∈ V . That is, f(v1,v2 + v′
2,v3) = f(v1,v2,v3) +

f(v1,v
′
2,v3) for all v1,v2,v

′
2,v3 ∈ V , and f(v1, cv2,v3) = cf(v1,v2,v3) for all

v1,v2,v3 ∈ V and c ∈ F.

3. f(v1,v2, ·) is linear for all v1,v2 ∈ V . You should now have a good idea of what
this means.

One consequence:

Proposition. The value of a multilinear function f : V n → W is 0W whenever one of its
inputs is 0V .

Proof. f(0V ,v2, . . . ,vn) is the value of the partially applied map f(·,v2, . . . ,vn) evalu-
lated at 0V . If f is multilinear, then by definition the partially applied map is linear,
and any linear map from V to W takes 0V to 0W . The same reasoning works when 0V

is any other argument to f , not just the first.
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5.3.3 Difference between multilinear and linear functions

The space V n can also be made a vector space in its own right, with vector addition and
scalar multiplication defined in terms of the corresponding operations on V : addition
as (v1, . . . ,vn) + (v′

1, . . . ,v
′
n) = (v1 + v′

1, . . . ,vn + v′
n) and c(v1, . . . ,vn) = (cv1, . . . ,vn).

A function f : V n → W could thus be a linear function, viewed as having as having
one input in V n that satisfies the usual linearity axioms. But the linearity axioms and
multilinearity axioms have very different consequences; and, in fact, only the zero
function f(v1, . . . ,vn) = 0W can satisfy both.

Let’s take n = 2 to give an easy-to-notate example. Let V and W are two vector
spaces over a field F, let f : V 2 → W be a function, let c be any element of F, and
let v1,v2 be any elements of V . If f is multilinear, then f(cv1, cv2) = cf(v1, cv2) (by
linearity in the first argument) = c2f(v1,v2) (by linearity in the second argument).

But if f is linear considered as a map with a single input in V 2, then f(cv1, cv2) =
f(c(v1,v2)) = cf(v1,v2). So if f is both linear and multilinear, then these two ex-
pressions must be equal; that is, (c2 − c)f(v1,v2) = 0W . A nonzero scalar times a
nonzero vector must be nonzero by the basic vector space axioms, so we can only have
(c2 − c)f(v1,v2) = 0W for all c ∈ F,v1,v2 ∈ V if f sends every input to 0W , or every
element of F equals its own square. (The only field with this property, as it happens, is
the field with two elements.)

Likewise, suppose v1,v2,v3,v4 are arbitrary elements of V . If f is multilinear, then
we can eand f(v1 + v2,v3 + v4) into f(v1,v3 + v4) + f(v2,v3 + v4) by linearity in
the first argument, and then further into f(v1,v3) + f(v1,v4) + f(v2,v3) + f(v2,v4)
by linearity in the second argument. If f is also linear, though, then we also have
f(v1 + v2,v3 + v4) = f(v1,v3) + f(v2,v4), so f(v1,v4) + f(v2,v3) = 0W . We could
set v2 = v3 = 0V (which means any value of f with v2 or v3 as an argument must be
0W ) to get f(v1,v4) = 0W for all v1,v4 ∈ V : that is, f must be the zero map (this time,
regardless of the field F).

This result generalizes to more than two dimensions; in fact, we can prove some-
thing slightly stronger.

Proposition. Let n ≥ 2 be an integer, let V and W be vector spaces over the same arbitrary
field, and consider V n to be a vector space with addition and multiplication derived from the
same operations on V . Then the only function f : V n → W that is both multilinear as a
function on n inputs from V and linear as a function of one input from V n is the constant map
that sends all inputs to 0W .

Proof. Let v1, . . . ,vn,vx be arbitrary elements of V . If f is multilinear, then it’s linear in
the first argument, so:

f(v1 + x,v2, . . . ,vn) = f(v1, . . . ,vn) + f(x,v2, . . . ,vn).

If f is also linear, then since (v1 + x,v2, . . . ,vn) = (v1,0V , . . . ,0V ) + (x,v2, . . . ,vn), we
have

f(v1 + x,v2, . . . ,vn) = f(v1,0V , . . . ,0V ) + f(x,v2, . . . ,vn)

and the first term, like the value of any multilinear function with an argument of zero,
must also be zero. If these two expressions for f(v1+x,v2, . . . ,vn) are equal, therefore,
then

f(v1, . . . ,vn) = 0.



5.3. MULTILINEAR, SYMMETRIC, AND ALTERNATING FUNCTIONS 165

Remark. Our proof didn’t actually use the full hypothesis that f was multilinear—only
that it was linear in the first argument, to break f(v1+x,v2, . . . ,vn) into f(v1, . . . ,vn)+
f(x,v2, . . . ,vn), and in at least one of the other arguments (to conclude that f is zero if
one of those arguments is zero). And there’s nothing special about the first argument,
so we’ve actually shown that if f : V n → W is linear as a map on V n as an entire vector
space, and at least two of the partial application maps V → W are linear, then f must be
the zero map. As an example of a nonzero linear map on V n whose partial application
maps on exactly one argument are linear, take f(v1, . . . ,vn) = T (v1), where T is any
nonzero element of Hom(V,W ). Then the partial application maps in argument 1 are
linear regardless of the values v2, . . . ,vn, but the partial application maps in any other
argument are not linear if v1 is fixed to a value that is not contained in kerT . (These
partial application maps are constant maps with a nonzero value, which cannot be
linear.)

As a final note, it’s possible to make two generalizations to our definition of multi-
linear functions as maps from V n to W :

1. The inputs to a function could come from different vector spaces: that is, we
could have maps V1 × · · · × Vn → W whose arguments are one element from V1

in the first position, one element from V2 in the second position, and so on.

2. Functions could have infinite numbers of arguments.

The definition of multilinearity in either generalization is the same: a function is
multilinear if the partial application maps from letting one argument vary and fixing
all other arguments except one to arbitrary values are all linear. The proposition that a
multilinear function has value zero whenever one argument has value zero also holds
for either generalization, as do the results (when suitably modified) about the dimen-
sion of the set of linear maps as a vector space.

These generalizations are relatively straightforward, though, and we won’t need
them much—when we discuss tensor products in Chapter 8, we’ll discuss bilinear
maps that take inputs from two different vector spaces, but none of the core results
really changes. And we won’t need multilinear maps that take infinite numbers of in-
puts, either. So for now, we’ll just mention that these generalizations exist, and leave it
at that.

5.3.4 Multiplicative but not additive closure of multilinear kernel
and image

Unlike with linear maps, the kernel (that is, preimage of {0W}) and image of a mul-
tilinear map f : V n → W are not generally vector subspaces of V n and W . The basic
reason is that unlike linear maps, multilinear maps don’t satisfy f(u+v) = f(u)+f(v),
and this fact generally makes it impossible to conclude that the kernel and image are
closed under addition.

• Kernel not closed under addition: Let V = W = R and n = 2 (that is, we’re
treating R as a vector space over itself), and consider the function f : R2 → R
with the formula f(x, y) = xy, treating R as a vector space over itself. You can
check that this satisfies linearity in the first argument (f(kx, y) = kf(x, y) and
f(x1 + x2, y) = f(x1, y) + f(x2, y)), and likewise in the second argument. But the
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“kernel” f−1({0}) of this map is {(x, y) : x = 0 or y = 0}, which is not closed
under addition: for instance, it includes (1, 0) and (0, 1) but not their sum (1, 1).

• Image not closed under addition: Let V = R2, W = R3, and and n = 2, and consider
the function f : (R2)2 → R3 with the formula f((a, b), (c, d)) = (ac, ad, bc). All
elements (x, y, z) ∈ R3 for x ̸= 0 are in the image of f : for instance, (x, y, z) =
f((1, z/x), (x, y)). But if (x, y, z) = f((a, b), (c, d)) and x = 0, then one of a or c
must be zero (and thus one of y or z must be zero). So

im f = {(x, y, z) ∈ R3 : x ̸= 0 or y = 0 or z = 0}

and there are elements of im f , for example (0, 1, 0) and (0, 1, 1), whose sum is not
in im f .

Images and kernels do, however, satisfy the other two subspace axioms. As a mul-
tilinear map f : V n → W satisfies f(0V n) = f(0V , . . . ,0V ) = 0W , so im f and ker f
always contain the zero elements of their enclosing subspaces im f and ker f . Both sets
are also closed under scalar multiplication:

• If w ∈ im f , so f(v1, . . . ,vn) = w for some vectors v1, . . . ,vn ∈ V , then kw =
f(kv1,v2, . . . ,vn) ∈ im f for any scalar k.

• If (v1, . . . ,vn) ∈ ker f , then f(k(v1, . . . ,vn)) = f(kv1, . . . , kvn) = knf(v1, . . . ,vn) =
kn0W = 0W for any scalar k, so (v1, . . . ,vn) ∈ ker f as well.

5.3.5 Dimension and basis of the space of multilinear functions

Like linear maps, multilinear functions can be added and multiplied by scalars: if
f : V n → W is a multilinear function, then kf is the function that sends (v1, . . . ,vn) to
kf(v1, . . . ,vn), and the sum f + g of f with another multilinear function g : V n → W
sends (v1, . . . ,vn) to f(v1, . . . ,vn) + g(v1, . . . ,vn). (Adding or multiplying multilinear
functions like this also adds or multiplies the partial application maps from fixing ev-
ery argument but one, and the sums and multiples of linear functions such as partial
application maps are also linear, so sums and multiples of multilinear functions must
also be linear. You may want to sketch this argument in more detail for yourself.)

So the set of multilinear maps from V n to W (let’s denote it Multilin(V n,W )) is a
vector space, and we’re naturally confronted with the basic questions we can ask about
any vector space: what is its dimension, and can we write a basis for it? We can take
a similar approach as we did for our computation of a basis for Hom(V,W ) in section
2.3, by using from the observation that (multi)linear maps are completely determined
by their values on a basis of V .

Let’s take a small, easy-to-notate example: suppose that V has dimension 2, W
has dimension 3, and the number of inputs n is 2. Let {bV

1 ,b
V
2 } be a basis for V , and

similarly let {bW
1 ,bW

2 ,bW
3 } be a basis for W .

If f is a multilinear function from V 2 to W , then we can use the multilinearity
properties to expand any value f(v1,v2), where v1 = abV

1 + bbV
2 and v2 = cbV

1 + dbV
1
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are two arbitrary vectors and a, b, c, d are scalars, into

f(v1,v2) = f(abV
1 + bbV

2 , cb
V
1 + dbV

2 )

= f(abV
1 , cb

V
1 + dbV

2 ) + f(bbV
1 , cb

V
1 + dbV

2 )
(first argument respects addition)

= f(abV
1 , cb

V
1 ) + f(abV

1 , db
V
2 ) + f(bbV

2 , cb
V
1 ) + f(bbV

2 , db
V
2 )

(second argument respects addition)

= ac f(bV
1 ,b

V
1 ) + ad f(bV

1 ,b
V
2 ) + bc f(bV

2 ,b
V
1 ) + bd f(bV

2 ,b
V
2 )

(both arguments respect multiplication)

So if we know the four values of f(bV
1 ,b

V
1 ), f(b

V
1 ,b

V
2 ), f(b

V
2 ,b

V
1 ), f(b

V
2 ,b

V
2 ), then we

know all the values of f . And conversely, any choice of these four determining values
gives one valid multilinear map f : specifically, if w11,w12,w21,w22 ∈ W are freely cho-
sen vectors in W , then the one multilinear map f : V 2 → R that satisfies f(bV

i ,b
V
j ) =

wij for i, j ∈ {1, 2} is

f(abV
1 + bbV

2 , cb
V
1 + dbV

2 ) = acw11 + adw12 + bcw21 + bdw22.

(You can check for yourself that this is indeed a multilinear map, and it should be pretty
clear that no other possible formula could give you all the right values of f(bV

i ,b
V
j ).)

Intutively, for each of these four determining values of f , we can independently
choose a vector in w, a three-dimensional vector space, so Multilin(V 2,W ) should have
dimension 4 × 3 = 12. A basis for this space would be the set of maps fijk for i ∈
{1, 2}, j ∈ {1, 2}, k ∈ {1, 2, 3}, that sends f(bV

i ,b
V
j ) to bW

k and sends every other input
pair of basis vectors to 0W : there can only be one such map fijk with such properties
for every choice of i, j, k. (To see that these maps can actually be defined, note that the
formula for f123 [for example] is f123(abV

1 +bbV
2 , cb

V
1 +dbV

2 ) = adbW
3 ; you can show that

f123 is multilinear in each argument, and it’s well-defined because the decomposition
of any input vector into a linear combination of bV

1 and bV
2 has to be unique).

More generally, the value f(v1, . . . ,vn) of any f ∈ Multilin(V n,W ) on an arbitrary
list of n inputs (where now V n and W have arbitrary dimension) is determined by the
(dimV )n values of f when each input is chosen independently. Each of these (dimV )n

possible lists of inputs contributes dimW basis functions to Multilin(V n,W ), namely
the functions that send that list of inputs to one basis vector of W and send the others
to 0W . So dimMultilin(V n,W ) = (dimV )n dimW .

5.3.6 Symmetric multilinear functions

Definition. A multilinear function is symmetric if swapping any two arguments preserves
the value of the function: that is, if

f(v1, . . . ,vn) = f(v1, . . . ,vi−1,vj,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vn)

for any integers 1 ≤ i < j ≤ n and any inputs v1, . . . ,vn ∈ V .

Since you can make any permutation by combining enough two-element transposi-
tions, this axiom has the immediate generalization that the value of a symmetric func-
tion stays the same if its inputs are permuted in any way: that is,

f(v1, . . . ,vn) = f(vσ(1), . . . ,vσ(n))
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for any v1, . . . ,vn ∈ V and any permutation σ ∈ Sn.
Let’s denote the set of symmetric multilinear maps from V n to W by Sym(V n,W ).

It’s straightforward to prove that Sym(V n,W ) is a vector subspace of Multilin(V n,W )
(i.e. that sums and multiples of symmetric maps are also symmetric, and that the zero
map is symmetric).

Like any multilinear map, a symmetric map f is determined by its values on lists
of basis elements of V , but the hypothesis that f is symmetric makes some of these
lists redundant. If V is a two-dimensional vector space with basis {bV

1 ,b
V
2 }, for in-

stance, then a general multilinear map f : V 2 → W is determined by the four values
f(bV

1 ,b
V
1 ), f(b

V
1 ,b

V
2 ), f(b

V
2 ,b

V
1 ), f(b

V
2 ,b

V
2 ). But if we also know that f is symmetric,

then we don’t need to know f(bV
2 ,b

V
1 ) if we know the other values, because it has to

equal f(bV
1 ,b

V
2 ). So a symmetric multilinear map f : V 2 → R is determined by three

inputs, not four, and the space of such maps has dimension 3 dimW .
Similarly, if f : V 5 → W is a symmetric multilinear map with five inputs, then the

values f(bV
1 ,b

V
1 ,b

V
1 ,b

V
2 ,b

V
2 ), f(bV

1 ,b
V
2 ,b

V
1 ,b

V
2 ,b

V
1 ), and f(bV

2 ,b
V
2 ,b

V
1 ,b

V
1 ,b

V
1 ) must all

be equal (and equal to the values of f on all the other ordered quintuples (v1, . . . ,v5)
where three of the vi equal bV

1 and the other two equal bV
2 ).

If V is a general finite-dimensional vector space and f : V n is symmetric, therefore,
then the non-redundant inputs that actually determine its value are (vB

i1
,vB

i2
, . . . ,vB

in)
where i1, . . . , in are indices sorted in non-strictly ascending order: that is, 1 ≤ i1 ≤ i2 ≤
· · · ≤ in ≤ dimV . (Any other value-determining input can be turned into one of these
by rearranging the basis vectors to sort their indices in ascending order.) Equivalently,
the number of independent value-determining inputs equals the number of n-element
multisets of {1, . . . , dimV }—that is, sets that (like regular sets) don’t have an internal
order of elements, but (unlike regular sets) can contain any number of copies of the
same element. These are equivalent because sorting the elements of a multiset of inte-
gers gives a unique non-strictly ascending integer sequence; and, conversely, you can
put the elements of any such sequence into a unique multiset.6

Counting multisets of a set with given size (or, equivalently, non-strictly ascending
sequences) is a standard problem in combinatorics. Suffice it to say7 that the number
of n-element multisets in a set of size d is

(
n+ d− 1

n

)
=

(n+ d− 1)!

n!(d− 1)!

so dimSym(V n,W ) =
(
n+dimV−1

n

)
dimW .

6One point that we’re glossing over here (and we will also gloss over a similar consideration in
the next section on skew-symmetric alternating functions) is whether there actually exists a symmetric
multilinear function f for every possible choice of determining values. Rest assured that there is, but
the proof is a bit more complicated than you might expect. We’ll return to this point in section 8.6.3.

7If a1, . . . , an is a n-element non-strictly ascending sequence of values in {1, . . . , d}, then a1, a2 +
1, a3 + 2, . . . , an + n− 1 is an n-element strictly ascending sequence of values in {1, . . . , n+ d− 1}. This
correspondence between non-strictly ascending sequences in {1, . . . , d} and strictly ascending sequences
in {1, . . . , n + d − 1}, furthermore, is bijective: given a strictly ascending sequence b1, . . . , bn, you can
restore the original non-strictly ascending sequence b1, b2−1, b3−2, . . . , bn−n+1. And there are

(
n+d−1

n

)
such strictly ascending sequences of n elements in {1, . . . , n+d−1}, the same as the number of n-element
subsets, because there is exactly one way to sort any such subset’s entries in ascending order.
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5.3.7 Skew-symmetric and alternating multilinear functions

Basic definitions

Let’s jump right in with definitions. There are two closely related concepts of skew-
symmetric and alternating linear functions. The first is a close analogue of the concept
of symmetric functions:

Definition. A multilinear map f : V n → W is skew-symmetric if swapping any two inputs
flips the sign of the function: that is,

f(v1, . . . ,vn) = −f(v1, . . . ,vi−1,vj,vi+1, . . . ,vj−1,vi,vj+1, . . . ,vn)

for arbitrary indices 1 ≤ i ≤ j ≤ n and vectors v1, . . . ,vn ∈ V .

This definition immediately implies another property for arbitrary permutations
σ ∈ Sn:

f(v1, . . . ,vn) = sgn(σ)f(vσ(1), . . . ,vσ(n)n)

because it always takes an even number of transpositions to make an even permuta-
tion, and it always takes an odd number of transpositions to make an odd permutation.

The next core definition in this section may seem a bit stranger:

Definition. A multilinear function f : V n → W is alternating if f is zero on any input
with duplicate vectors: that is, if v1, . . . ,vn is a list of vectors and ther are some integers
1 ≤ i < j ≤ n such that vi = vj , thenw f(v1, . . . ,vn) = 0W .

We’ll write Sksym(V n,W ) and Alt(V n,W for the sets of skew-symmetric and alter-
nating multilinear maps from V n to W . It’s straightforward to prove that both sets are
vector subspaces of Multilin(V n,W ).

Alternating maps are skew-symmetric (and vice versa outside characteristic 2)

Unlike almost all of our results so far, the theory of skew-symmetric and multilinear
maps varies depending on the underlying field. In particular, the theory for fields with
characteristic 2 (that is, in which 1 = −1: the multiplicative identity is its own additive
inverse) is different from that of all other fields, including the familiar ones R and C.
(See 1.3.3 if you need a reminder of field characteristic.)

In particular, for arbitrary fields, we have this result:

Proposition. Every alternating multilinear map is skew-symmetric.

Proof. Let V,W be two vector spaces, and let f : V n → W be an alternating multilinear
map. We’ll prove that f(v1,v2,v3, . . . ,vn) = f(v2,v1,v3, . . . ,vn) (the proof for swap-
ping any pair of arguments other than the first and second is identical). We’ll write V
as shorthand for v3, . . . ,vn.

For any multilinear map f : V n → W , we can use multilinearity in the first and
second arguments to get

f(v1 + v2,v1 + v2,V) = f(v1,v1,V) + f(v1,v2,V) + f(v2,v1,V) + f(v2,v2,V).

If f is alternating, then all the terms with duplicate arguments become 0W , leaving

0W = f(v1,v2,V) + f(v2,v1,V)

which is what we needed to prove.
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But the converse applies only over fields that don’t have characteristic 2. This fact relies
on a result from page 30: in a vector space over a field of characteristic 2, every element
is its own additive inverse; in a vector space over any other field, the only vector that
is its own additive inverse is 0.

Proposition. Every skew-symmetric multilinear function on vector spaces over a field that
does not have characteristic 2 is alternating.

Proof. We’ll prove that f has zero value if the first and second arguments are equal; the
argument for if any other pair of arguments are equal is the same. Again, use V as a
shorthand for v3, . . . ,vn.

If f is skew-symmetric, then we know that f(v1,v2,V) = −f(v2,v1,V) for arbitrary
elements v1, . . . ,vn ∈ V . In particular, if we set v1 and v2 to the same element x ∈ V ,
then we get

f(x,x,V) = −f(x,x,V);

that is, f(x,x,V) is an element of W that is its own additive inverse. If the under-
lying field has characteristic 2, then this tells us nothing; otherwise, it tells us that
f(x,x,V) = 0W , the only element of W that is its own additive inverse.

In fact, in characteristic 2, skew-symmetric functions are the same as symmetric
functions. The value of a skew-symmetric function (by definition) changes to its neg-
ative if two arguments are flipped, while the value of a symmetric function stays the
same; and in a vector space over a field of characteristic 2, every vector is its own
negative.

For an example in characteristic 2 of a multilinear alternating function that is not
symmetric (= skew-symmetric), let F2 be the field of integer arithmetic modulo 2, with
elements {0, 1} and operations 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 0, 0 × 0 = 0 × 1 =
1× 0 = 0, 1× 1 = 1. Define f : (F2

2)
2 → F2 as

f((x1, y1), (x2, y2)) = x1x2 + y1y2.

This map is clearly (skew-)symmetric: if the subscript 1s and 2s in the RHS are swapped,
the result is the same. But it’s not alternating, as (for instance) f((1, 0), (1, 0)) = 1.

Results on alternating maps

The definition of alternating multilinear maps has an immediate generalization:

Corollary. An alternating multilinear function f : V n → W has value 0W whenever one of
its arguments is a linear combination of the others.

Proof. We’ll prove this in the case when the first argument is a linear combination of
the others (the proof for the other arguments is identical). Suppose v1 = c2v2 + c3v3 +
· · ·+ cnvn. Then by linearity in the first argument, we can expand

f(v1, . . . ,vn) = c2f(v2,v2, . . . ,vn) + c3f(v3,v2, . . . ,vn) + · · ·+ cnf(vn,v2, . . . ,vn).

Every term on the right-hand side has a duplicate argument to f and thus equals 0W ,
so f(v1, . . . ,vn) = 0W as well.
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Alternating multilinear functions are determined by even fewer values on basis
vector inputs than symmetric multilinear functions. Let’s return to our example of
f : V 2 → W where V has dimension 2 and basis {bV

1 ,b
V
2 }. A fully generic multilinear

function f is determined by the four values f(bV
1 ,b

V
1 ), f(b

V
1 ,b

V
2 ), f(b

V
2 ,b

V
1 ), f(b

V
2 ,b

V
2 ).

If we also know that f is alternating, not only do we not need to know f(bV
2 ,b

V
1 )—it

must equal −f(bV
1 ,b

V
2 ), because alternating maps are skew-symmetric—but we also

know that f(bV
1 ,b

V
1 ) = f(bV

2 ,b
V
2 ) = 0W , because f must have value 0W if it has a

duplicate input. So our choice of f(bV
1 ,b

V
2 ) completely determines f .

More generally, suppose f : V n → W and V has dimension d, and {bV
1 , . . . ,b

V
d } is a

basis of V . Let a1, . . . , an be integer indices in the range 1 ≤ ai ≤ d. Then:

1. If any of the indices a1, . . . , an equals any of the others, then f(bV
a1
, . . . ,bV

an) = 0W .

2. If the indices a1, . . . , an are all different, then let b1, . . . , bn be the rearrangement of
a1, . . . , an in ascending order, and let σ be the permutation on {1, . . . , n} such that
i = σ(i). Then f(bV

a1
, . . . ,bV

an) = sgn(σ)f(bV
b1
, . . . ,bV

bn
).

So f is determined by its values on inputs of the form (bV
b1
, . . . ,bV

bn
), where the in-

dices are non-equal and strictly increasing: 1 ≤ b1 < · · · < bn ≤ dimV . Every such se-
quence of indices corresponds to one n-element subset (not multiset) of {1, . . . , dimV },
and the number of such sets is(

dimV

n

)
=

(dimV )!

n!(dimV − n)!
.

The total dimension of the vector space of alternating sets is thus
(
dimV

n

)
dimW .

5.3.8 Special properties of Alt(V n,W ) when dimV = n

One special case of our discussion of alternating functions: if dimV = n, then any
alternating multilinear function f : V n → W is determined entirely by the single
value f(bV

1 , . . . ,b
V
n ). In fact, there’s a bijective map T : W → Alt(V n,W ): specifi-

cally, Tw for any vector w ∈ W is the uniquely determined alternating map f such
that f(bV

1 , . . . ,b
V
n ) = w. (I’ll leave it to you to prove that T is in fact linear: the proof is

straightforward.)
There is one more important pair of result and corollary that will become crucial

for the definition of the determinant:

Proposition. If V and W are two vector spaces over the same field with dimV = n, and
f ∈ Alt(V n,W ), then every value of f on linearly independent inputs is a scalar multiple of
every other.

Proof. Let {v1, . . . ,vn} and {v′
n, . . . ,v

′
n} be two linearly independent subsets (and, there-

fore, bases) of V . Define w = f(v1, . . . ,vn).
We can write each of v′

1, . . . ,v
′
n as a linear combination of v1, . . . ,vn and then mul-

tilinearity of f to expand f(v′
1, . . . ,v

′
n) into a sum of scalars times values of f with all

arguments drawn from {v1, . . . ,vn}. As f is alternating, each of these values of f is
either zero (if it got a duplicate argument) or ±w (if its arguments are a permutation
of (v1, . . . ,vn), so the sum must be a scalar multiple of f(v1, . . . ,vn).
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Corollary. With the same hypotheses as in the previous proposition, if f is not the zero map,
then:

1. im f is a one-dimensional subspace of W .

2. f(v1, . . . ,vn) = 0 if and only if {v1, . . . ,vn} is linearly dependent. (The “if” statement
is a basic result on general alternating maps; the reverse “and only if” implication is new.)

Proof. If f has a nonzero value, then it must take that value on some list of linearly in-
dependent inputs, because the value of any alternating multilinear function on linearly
dependent inputs is zero. So V has some linearly independent subset (and necessarily
basis, because dimV = n) {v1, . . . ,vn} that satisfies w := f(v1, . . . ,vn) ̸= 0W .

Then previous results give us:

1. From section 5.3.4, the image of a multilinear map is closed under multiplication,
so every multiple of w is in im f .

2. From the previous proposition, every value of f on linearly independent inputs
is a multiple of any other (and, in particular, a multiple of w). And on linearly
dependent inputs, f can only take the value 0W . So im f contains only elements
of span{w}.

Statements 1 and 2 together imply im f = span{w}, which is conclusion 1 in the
corollary statement.

3. w = f(v1, . . . ,vn) (which, again, by definition cannot be 0W ) must be a scalar
multiple of f(v′

1, . . . ,v
′
n) for any other linearly independent set {v′

1, . . . ,v
′
n}. This

implies that f(v′
1, . . . ,v

′
n) ̸= 0W , because the only scalar multiple of 0W is 0W .

This establishes conclusion 2 in the corollary statement.

5.4 Formal definition of determinant

We’re finally ready to present the formula for the determinant of any square matrix.
It’s not obvious that this definition satisfies the properties that we outlined on page
158, but soon enough, we’ll prove that it does.

Let A be a square n×n matrix with entries in some arbitrary field F. Write the entry
in row i and column j of A as aij . (From now on, we’ll adopt the shorthand notation
A = (aij) to indicate that A is a matrix whose entry in row i and column j is (aij). We’ll
also say that the slot in a matrix at row i and column j is “position (i, j).”)

The determinant of A, notated detA, is this:

detA =
∑
σ∈Sn

(−1)σa1,σ(1)a2,σ(2) · · · an,σ(n).

This definition may need some explanation. Every permutation σ of the set {1, . . . , n}
gives a a choice of n entries of the matrix that includes one entry in each row and in
each column: namely, for every row number i, pick the entry in column σ(i). This
choice of entries contributes one term to the sum for detA: multiply all the entries
together, and then flip the sign if σ is odd.
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To see how this formula works more clearly, let’s specialize it to 2 × 2 and 3 × 3
matrices. (The determinant of a 1 × 1 matrix is its sole entry.) Consider the general
2× 2 matrix [

w x
y z

]
.

S2 contains two permutations: the identity, which is even, and the transposition (1 2),
which is odd. The identity gives the term a11a22 = wz and (1 2) gives the term −a12a21 =
−xy, so the determinant of a 2× 2 matrix is wz − xy.

Now consider the 3× 3 matrix a b c
d e f
g h i


S3 has 3! = 6 elements, three odd and three even. The even permutations are the
identity, which gives the term aei, and the cycles (1 2 3) (which gives the product of
the entries at positions (1, 2), (2, 3), and (3, 1), namely bfg) and (1 3 2) (which gives the
product of the entries at positions (1, 3), (2, 1), and (3, 2), namely cdh).

The odd permutations are the transpositions (1 2), (2 3), and (1 3), which respec-
tively give −bdi, −afh, and −ceg. Therefore,

det

a b c
d e f
g h i

 = aei+ bfg + cdh− afh− bdi− ceg.

You may want write out an expanded formula for 4 × 4 determinants. S4 contains
24 elements: the identity, 6 transpositions (i.e. length-2 cycles), 8 cycles of length 3, 6
cycles of length 4, and 3 permutations with cycle structure 2+2. Remember that exactly
half of the elements of Sn for n ≥ 2 are even.

One final bit of notation: the determinant of a matrix is sometimes notated by writ-
ing the matrix entries within vertical bars rather than brackets: thus, for instance, you

may see
∣∣∣∣a b
c d

∣∣∣∣ to mean det

[
a b
c d

]
.

For now, we’ll define the determinant of an operator T : Fn → Fn as the determinant
(as defined above) of the matrix that represents T with respect to the standard basis.
We’ll eventually prove that the choice of basis doesn’t matter: all matrix representa-
tions of T have the same determinant.

One useful exercise, finally, may help you solidify your understanding of transpo-
sitions and the definition of the determinant. Consider the n× n matrix with entries of
1 on the anti-diagonal from top right to bottom left, and 0 elsewhere: that is,

0 0 · · · 0 1
0 0 · · · 1 0
...

... . . . ...
...

0 1 · · · 0 0
1 0 · · · 0 0

 .

Prove that the determinant of this matrix is 1 if n has remainder 0 or 1 when di-
vided by 4, and -1 otherwise. (Hint: only one permutation σ ∈ Sn picks out all the
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nonzero terms, and only nonzero terms, from this matrix. What is this permutation’s
sign?) This matrix is an example of a permutation matrix, which has entries of 1 in the
positions (i, σ(i)) for some fixed permutation σ and entries of 0 everywhere else. The
determinant of a permutation matrix is just sgnσ.

5.5 Properties of the determinant

The definition of the determinant given in the previous section is complicated and may
seem like it came out of thin air, but thankfully, most computations with determinants
can just use several general properties of determinants, not the sum-over-permutations
definition. These four properties are the most important. In this section, we’ll prove
properties 2, 3, and 4, as well as implication 3b; property 1 and implication 3a will take
a bit more work.

We’ll assume for the rest of this section that the underlying field does not have
characteristic 2, so we have access to all the results from sections 5.3.7 and 5.3.8.

1. The determinant of a matrix product is the product of the individual matrix de-
terminants: det(AB) = (detA)(detB).

2. Every matrix has the same determinant as its transpose.

3. The determinant, viewed as an n-input function that takes each matrix row or
column as a separate input, is an alternating (and therefore skew-symmetric,
even in characteristic 2) multilinear function from (Rown(F))n to F as well as from
(Coln(F))n to F. This fact has two important implications:

(a) Elementary row operations affect determinants in predictable ways, namely:
scale operations multiply the determinant by the scale factor, swap opera-
tions flip the sign of the determinant, and shear operations leave the deter-
minant unchanged.

(b) The determinant is zero if and only the matrix has linearly dependent rows
(and, therefore, columns); that is, if and only if it does not have full rank and
(equivalently) creates a non-bijective multiplication operator on Coln(F).

4. The determinant of a triangular matrix is the product of the diagonal entries.

This section is unavoidably a blizzard of small propositions, but all of them are
either for proving one of these four properties or a lemma that will be useful for later
sections. No proof relies on an inference that a skew-symmetric multilinear function is
alternating, so they all work in characteristic 2.

Proposition. The determinant of an upper or lower triangular matrix is the product of the
diagonal entries. (This is key property 4.)

Proof. If A = (aij) is an n × n upper triangular matrix, then the terms a1σ(1), . . . , anσ(n)
can only be all nonzero if i ≤ σ(i) for all integers 1 ≤ i ≤ n. The only element σ ∈ Sn

that satisfies this criterion, as we remarked on page 162, is the identity permutation,
which gives the element a11 · · · ann. The reasoning for lower triangular matrices is sim-
ilar.



5.5. PROPERTIES OF THE DETERMINANT 175

Remark. Diagonal matrices are upper and lower triangular, so the determinant of a
diagonal matrix is also the product of its diagonal entries. The diagonal matrix with
diagonal entries of 1—that is, the identity matrix—thus has determinant 1.

Proposition. If A = (aij) is a square matrix and AT is its transpose, then detA = detAT .
(This is key property 2.)

Proof. Write AT = B = (bij). Then bij = aji for all integers 1 ≤ i, j ≤ n.
The entries a1σ(1), . . . , anσ(n) in one term of detA are the same as (though in a dif-

ferent order from) the entries b1σ−1(1), . . . , bnσ−1(n) in one term of detB: if j = σ(i),
then aiσ(i) equals bjσ−1(j), and σ gives a bijection between values of i and j. So the
terms for σ in detA and σ−1 in detB have the same values and the same sign, because
sgnσ = sgn(σ−1). The sum-over-permutations expressions for detA and detB thus
have all the same terms with the same sign, just ordered differently.

Proposition. The determinant is a multilinear function on matrix rows. (This is part of key
property 3.)

Proof. Some notation: write R(r1, . . . , rn) for the matrix with rows r1, . . . , rn ∈ Rown(F),
and write D(r1, . . . , rn) for the determinant of this matrix.

To prove that D is a multilinear function from (Rown(F))n to F, we need to prove
that the partial application maps from fixing all inputs to D except one to arbitrary val-
ues are linear. We’ll prove that the map D(·, r2, . . . , rn), with all arguments but the first
fixed, is linear for all r2, . . . , rn ∈ Rown(F). (The proof for the other partial application
maps is identical.)

To prove that D(·, r2, . . . , rn) is linear, we need to check that it satisfies the two linear
map axioms:

1. Respect for addition: D(r1 + r′1, r2, . . . , rn) = D(r1, r2, . . . , rn) +D(r′1, r2, . . . , rn) for
all r1, r′1, r2, . . . , rn ∈ Rown(F). Proof: Define A = (aij) := R(r1, r2, . . . , rn), B =
(bij) := R(r′1, r2, . . . , rn), and C = (cij) := R(r1+r′1, r2, . . . , rn). Then: c1j = a1j+b1j
for every column index 1 ≤ j ≤ n, and aij = bij = cij for every row index
2 ≤ i ≤ n. Remember that every term in the formula for the determinant includes
exactly one matrix element from the first row.

So for each permutation σ, we can expand the term c1σ(1)c2σ(2) in detC as (a1σ(1)+
b1σ(1))c2σ(2) · · · cnσ(n) = a1σ(1)a2σ(2) · · · anσ(n) + b1σ(1)b2σ(2) · · · bnσ(n): that is, the term
with σ in the formula detC is the sum of the terms with σ in detA and in detB.
This means that detC = detA+ detB.

2. Respect for multiplication: D(kr1, r2, . . . , rn) = kD(r1, r2, . . . , rn) for all r1, . . . , rn ∈
Rown(F) and k ∈ F. Proof: every term in the determinant includes exactly one
matrix element in the first row, so multiplying everything in the first row by k
means multiplying every term in the determinant (and, therefore, the total value
of the determinant) by k.

Corollary. The determinant is a multilinear function on matrix columns.
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Proof. Virtually identical to the proof for the preceding proposition with the words
“row” and “column” interchanged where necessary. You can also argue that every
matrix has the same determinant as its transpose, and vector space operations on the
columns of a matrix produce the same operations on the rows of its transpose.

Proposition. The determinant of a matrix with two equal rows is zero. (This establishes that
the determinant is an alternating function on matrix rows, which is the remaining part of key
property 3.)

Proof. Let M = (mij) be an n × n matrix, and suppose rows k and ℓ of M are equal.
Let τ ∈ Sn be the permutation (necessarily odd) that transposes k and ℓ while leaving
every other element the same. Let An denote the set of even permutations in Sn. Note
that as with all transpositions, τ = τ−1.

The map σ 7→ σ ◦ τ , as we mentioned on page 160, is a bijection on Sn that takes
even permutations to odd permutations and vice versa, so every element σ ∈ Sn can
be written in exactly one way as either σ = σ̃ or σ = σ̃ ◦ τ where σ̃ ∈ An.

So we can split the terms in detM into pairs, like this:

detM =
∑
σ∈Sn

sgn(σ)m1,σ(1) · · ·mn(σn)

=
∑
σ̃∈An

(
sgn(σ̃)m1,σ̃(1) · · ·mn,σ̃(n) + sgn(σ̃ ◦ τ)m1,σ̃◦τ(1) · · ·mn,σ̃◦τ(n)

)
=
∑
σ̃∈An

(
m1,σ̃(1) · · ·mn,σ̃(n) −m1,σ̃◦τ(1) · · ·mn,σ̃◦τ(n)

)
.

The products m1,σ̃(1) · · ·mn,σ̃(n) and m1,τ◦σ̃(1) · · ·mn,τ◦σ̃(n) include mostly the same
matrix elements, except that while the first product includes the elements in posi-
tions (k, σ̃(k)) and (ℓ, σ̃(ℓ)), the second product includes the elements in positions
(k, σ̃ ◦ τ(k)) = (k, σ̃(ℓ)) and (ℓ, σ̃ ◦ τ(ℓ)) = (ℓ, σ̃(k)). But if rows k and ℓ are equal,
then these two products of matrix entries must be equal for every σ̃ ∈ An, and their
difference must be zero.

Corollary. If two columns of a matrix are equal, then the matrix has determinant zero.

Proof. You can make a similar argument to the previous proposition based on the
fact that if columns k and ℓ are equal and τ is the transposition of k and ℓ, then
m1,σ(1) · · ·mn,σ(n) and m1,τ◦σ(1) · · ·mn,τ◦σ(n) are equal, and σ 7→ τ ◦ σ is a bijection on
Sn that takes even permutations to odd permutations and vice versa.

Alternatively, note that detM = detMT , and M has two equal columns if and only
if MT has two equal rows.

We have now established key properties 2, 3, and 4. Since the determinant is an al-
ternating multilinear function on n inputs from an n-dimensional vector space Rown(F)
or Coln(F), we can apply of the results from sections 5.3.7 and 5.3.8.

Any such map must be uniquely determined its value on any one set of linearly in-
dependent inputs. In particular, we could choose the identity matrix I as the determin-
ing input, which gives us the following elegant characterization of the determinant:
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Corollary. The determinant is the only multilinear function on matrix rows (or columns) that
satisfies det I = 1.

Finally, the corollary on page 172, plus the fact that there is at least one matrix with
nonzero determinant, gives us these results:

1. Any matrix has determinant zero if and only if its rows are not linearly indepen-
dent. The same goes for columns. (This is implication 3b in our list.)

2. The image of the multiplication operator on Coln(F) created by a matrix is the
span of the columns, so this operator is bijective if and only if the determinant of
the matrix that creates it is not zero.

5.6 Multiplicativity of the determinant

We’ve established properties 2 through 4 of the list at the beginning of the last section
(with the exception of 3a), but we haven’t proved yet that det(AB) = detA detB. To
prove this, we’re going to use the following facts:

1. Every matrix M of dimension r × c can be factored as M = R1 · · ·RnE for some
integer n ≥ 0, where R1, . . . , Rn are r × r matrix representations of elementary
row operations and E is in RREF.

2. A square matrix in RREF either is the identity matrix or has a row of zeros.

3. An n× n matrix has nonzero determinant if and only if its rank is zero.

The missing piece of our argument is a correspondence between the determinants
of elementary row operations’ matrix representations, on the one hand, and the ef-
fect that the row operations have on the determinants of other matrices, on the other:
in particular, if R is an elementary row operation matrix and B is any matrix, then
det(RB) = detR detB. This result will let us prove that det(AB) = detA detB for
arbitrary matrices.

Let’s look at each of the three elementary row operations in turn:

1. Row scaling operations ri 7→ λri multiply determinants by the factor λ, because
every term in a determinant includes one entry from each row. The matrix repre-
sentation of row scaling is a diagonal matrix with one entry of λ at position (i, i)
and all other diagonal entries 1, so its determinant is the product of the diagonal
entries, namely λ.

2. Row swaps ri ↔ rj flip the sign of the determinant (that is, multiply it by −1),
because the determinant is alternating and therefore skew-symmetric (even in
characteristic 2). The matrix representation of a row swap is the permutation
matrix with entries of 1 in the positions (i, j) and (j, i) and zeros elsewhere: that
is, the permutation matrix that represents the transposition τij . In the sum-over-
permutations expression for the determinant of this matrix, the only permutation
σ that chooses only nonzero terms is σ = τi, so the determinant is sgn(τij) = −1.
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3. Row shears ri 7→ ri + λrj leave the determinant unchanged. To see this, write
D(r1, . . . , rn) for the determinant of the matrix with rows r1, . . . , rn ∈ Rown(F).
Then for the operation r1 7→ r1 + λr2, we have

D(r1 + λr2, r2, . . . , rn) = D(r1, r2, . . . , rn) + λD(r2, r2, . . . , rn)
(linearity in first argument)

= D(r1, r2, . . . , rn)
(alternating function with duplicate arguments has value zero)

The matrix representation of ri 7→ ri +λrj has entries of 1 along the diagonal and
one nonzero off-diagonal entry of λ in position (i, j). This matrix is either lower
triangular if i > j or upper triangular if i < j; in either case, it has determinant
1, because the determinant of a triangular matrix is the product of its diagonal
entries.

These results can be summed up in the following lemma:

Lemma. If R1, . . . , Rn are n × n matrix representations of elementary row operations and A
is any n× n matrix, then det(R1 · · ·RnA) = detR1 · · · detRn detA.

Proof. We’ve basically just proved this result for the n = 1 case. If R is a row scaling
by λ, then detR = λ and det(RA) = λ detA; if R is a row swap, then detR = −1 and
det(RA) = − detA; if R is a shear, then detR = 1 and det(RA) = detA.

To prove the general case, first parenthesize R1 · · ·RnA as R1(R2 · · ·RnA) and apply
the n = 1 case to get det(R1 · · ·RnA) = detR1 det(R2 · · ·RnA); then apply the n = 1
case again to get detR2 · · ·RnA = (detR2) det(R3 · · ·RnA), and so forth.

Remember also that a matrix A has determinant zero if and only if the multiplica-
tion operator v 7→ Av on Coln(F) is not bijective (and thus nullspA contains nonzero
elements). This gives us the following result:

Lemma. If A and B are matrices, and at least one of A and B has determinant zero, then AB
also has determinant zero.

Proof. Two cases:

1. A has determinant zero, but B doesn’t. Choose some nonzero vector v ∈ nullspA ⊆
Coln(F), and choose w such that Bw = v. (As B doesn’t have determinant zero,
so its multiplication map is bijective, so such a w must exist.) Thus, (AB)w =
A(Bw) = Av = 0. And w can’t be zero (because M0 = 0 for any matrix M , but
v ̸= 0). So w is a nonzero element of nullspAB, so det(AB) = 0.

2. B has determinant zero. Then if v is any nonzero element of nullspB, then (AB)v =
A(Bv) = A0 = 0, so v ∈ nullsp(AB).

Remark. The above proof didn’t actually use any properties of matrices as opposed to
operators besides the correspondence between bijectivity and nonzero determinant;
we could have phrased it in operator language that if V is a finite-dimensional vec-
tor space and T1, T2 ∈ End(V ), then dimker(T1 ◦ T2) ̸= 0 if either dimkerT1 ̸= 0 or
dimkerT2 ̸= 0.
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Finally, we have our final result:

Theorem. The determinant respects matrix multiplication. That is, for any two matrices
A,B ∈ Matn×n(F), we have det(AB) = detA detB.

Proof. Break into two cases:

1. detA = 0 or detB = 0 or both. Then the lemma we just proved shows that
det(AB) = 0 = detA detB.

2. detA ̸= 0 and detB ̸= 0. Then rref A = rref B = I , so A and B factor completely as
products of elementary row operation matrices A = R1 · · ·Rm and B = S1 · · ·Sn,
so AB = R1 · · ·RmS1 · · ·Sn. We’ve already proved that the determinant respects
matrix multiplication when every matrix in a product except possibly the right-
most is an elementary row operation matrix, so detA = detR1 · · · detRm, detB =
detS1 · · · detSn, and det(AB) = detR1 · · · detRm detS1 · · · detSm.

Remark. This result immediately generalizes to three or more matrices: for instance,
det(ABC) = detA det(BC) = detA detB detC.

The multiplicativity of the determinant has two important consequences:

1. We can compute an n× n matrix’s determinant from its LU factorization in O(n)
time: if PA = LU , then detP detA = detL detU , and detP is a permutation
matrix (with determinant ±1) and L and U are triangular matrices whose deter-
minants are the products of their diagonal entries.

2. Since det I = 1 and AA−1 = I for any invertible matrix A, so detA−1 = 1/ detA.

5.7 Minors, cofactors, adjugate matrix

This section and the following sections discuss an alternate method of computing ma-
trix determinants that can be useful for computations by hand. Along the way, we’ll
find formulas in closed form for the entries of a matrix inverse and the solutions to a
linear system, not merely an algorithm for computing them (though these formulas are
too complicated to be of much use).

First, some definitions. Let A be an n× n matrix. A first minor of A, notated Mij for
some particular integers i, j, is the determinant of the (n− 1)× (n− 1) matrix created
by removing row i and column j from A. We’ll call this matrix A(ij), so Mij = detA(ij).
(There are also second, third, etc. minors created by removing two, three, etc. rows and
columns, but we won’t discuss those.)

For example, consider the matrix

A =


1 −4 4 3
0 2 6 2
−3 5 −1 −2
0 4 0 −5


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Let’s calculate the second minor M32. Removing the required row and column gives
1 ⋆ 4 3
0 ⋆ 6 2
⋆ ⋆ ⋆ ⋆
0 ⋆ 0 −5

 −→ A(32) =

1 4 3
0 6 2
0 0 −5


which is an upper triangular matrix with determinant M32 = −30, the product of the
entries on the diagonal.

A cofactor of a matrix, notated Cij , is the corresponding first minor Mij if i + j is
even, or −Mij if i + j is odd. In short, Cij = (−1)i+jMij . So, for example, C11 = M11,
C12 = −M12, and C21 = −M21. The cofactor C32 of the matrix A above is −M32 = 30,
because 3 + 2 is odd.

The cofactor matrix of A is the matrix whose entry in row i and column j is Cij . The
adjugate matrix, notated adjA, is the transpose8 of the cofactor matrix:

adjA =


C11 C21 C31 · · · Cn1

C12 C22 C32 · · · Cn2

C13 C23 C33 · · · Cn3
...

...
... . . . ...

C1n C2n C3n · · · Cnn

 =


M11 −M21 M31 · · · ±Mn1

−M21 M22 −M23 · · · ∓Mn2

M13 −M23 M33 · · · ±Mn3
...

...
... . . . ...

±M1n ∓M2n ±M3n · · · Mnn


where ± means + if n is odd and − if n is even, and vice versa for ∓.

5.8 Expansion by cofactors

The cofactor and adjugate matrices give us a recursive method of computing the deter-
minant, called Laplace expansion or expansion by cofactors. This method is impractical for
computation in the general case because it expands the determinant of an n×n matrix
into a sum of n determinants of (n − 1) × (n − 1) matrices; expanding these determi-
nants recursively takes O(n!) computation time. But it can be useful for computations
by hand on small matrices, especially if one one row or column of the matrix has a
large number of zeros.

5.8.1 Restricted permutations

Laplace expansion hinges on the following result: if you take any row ai1, ai2, . . . , ain
of a matrix A and multiply each entry by the cofactor Ci1 in the same position in the
matrix of cofactors, then the sum of results ai1Ci1 + ai2Ci2 + · · · + ainCin is detA. The
same result holds for columns: a1iC1i + · · · + aniCni = detA for any integer 1 ≤ i ≤ n.
More concisely: every diagonal entry in the matrices A(adjA) and (adjA)A is detA. To
prove the theorem, first we’ll prove a lemma about general transpositions that lets us
relate the signs of terms in the expansion of detA to the signs of corresponding terms
in A’s first minors. What we mean by “corresponding” should be clearer in a bit. The
statement of the lemma is unavoidably complicated; I’ve tried to make the intuition
clear.

8Remember that the transpose of a matrix is the reflection of the matrix across the diagonal, so that
row i becomes column i and vice versa.
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Lemma. Let n be an integer ≥ 2, and let σ ∈ Sn be some permutation of {1, . . . , n}. Write [n]
for the set of integers {1, . . . , n}, and remember that [n] \ {k} = {1, . . . , k − 1, k + 1, . . . , n}
for every integer 1 ≤ k ≤ n. For each integer 1 ≤ k ≤ n, define the bijective functions
fk : [n− 1] → [n] \ {k} as

fk(i) =

{
i 1 ≤ i ≤ k − 1

i+ 1 k ≤ i ≤ n− 1
.

That is, fk(i) is the ith smallest element of [n] \ {k}, and for an n × n matrix A, the entry
at position (i, j) of A(k,ℓ) equals the entry at position (fk(i), fℓ(j)) of A. Note that f−1

k :
[n] \ {k} → [n− 1] assigns every element of [n] \ {k} to its rank order.

Also define the restricted permutation σ̃k ∈ Sn−1 as σ̃k = fσ(k) ◦ σ ◦ f−1
k ; that is, if σ

gives a bijection from [n] \ {k} to [n] \ {σ(k)}, then if we identify both of these sets with [n− 1]
by using f−1

k and fσ(k), then σ̃k ∈ Sn−1 is the resulting permutation on [n − 1]. So if σ gives
some term in detA that includes the entry ak,σ(k), then σ̃ gives the term in detA(k,σ(k)) that
includes all the same entries except ak,σ(k).

Then sgn σ̃k = (−1)k+σ(k) sgnσ; that is, σ and σ̃k have the same sign if k + σ(k) is even,
and opposite signs if k + σ(k) is odd.

Proof. Since f−1
k and fσ(k) are monotonically increasing, σ̃k inverts two integers i, j ∈

[n− 1] \ {k} if and only if σ inverts the corresponding integers f−1
k (i), f−1

k (j). So σ and
σ̃k have the same parity if and only if σ inverts k with an even number of elements
of [n] \ {k}: these are the inversions of σ that don’t have a counterpart inversion of σ̃.
Partition [n] \ {k} into four disjoint subsets:

1. A = {i ∈ [n] : i < k, σ(i) < σ(k)}

2. B = {i ∈ [n] : i < k, σ(i) > σ(k)}

3. C = {i ∈ [n] : i > k, σ(i) < σ(k)}

4. D = {i ∈ [n] : i > k, σ(i) > σ(k)}

Then σ inverts the set {k, i} if and only if i ∈ B or i ∈ C. Furthermore, A ∪ B =
{1, . . . , k − 1}, an A ∪ C is the preimage of {1, . . . , σ(k) − 1} under σ. As σ is bijective,
so |A ∪ C| = σ(k) − 1. And as the sets A,B,C,D are all disjoint, the size of any union
of two or more of them is equal to the sum of the constituent sets’ sizes, so

|B ∪ C| = |A ∪B|+ |A ∪ C| − 2|A|
= k + σ(k)− 2|A| − 2

so |B ∪ C| is even (and σ and σ̃k have the same parity) if and only if k + σ(k) is even.

Remark. The correspondence between σ and σ̃k is bijective: for any fixed integers k, ℓ ∈
[n] and any permutation τ ∈ Sn−1, there is one and exactly one permutation σ ∈ Sn

such that σ(k) = ℓ and the reduced permutation fℓ ◦ σ ◦ f−1
k equals τ .
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5.8.2 Laplace expansion formula

Theorem (Laplace expansion formula). Let A be an n × n matrix, write aij for the entry
in position (i, j) of A, and let Cij denote the entries of the cofactor matrix of A. Then ar1Cr1 +
· · ·+ arnCrn = a1cC1c + · · ·+ ancCnc = detA for all row and column indices 1 ≤ r, c ≤ n.

Proof. We’ll first prove the result for expansion across a fixed row r: that is, detA =
ar1Cr1 + · · · + arnCrn. For each column number j, consider the terms in detA =∑

σ∈Sn
(−1)σa1σ(1) · · · anσ(n) that include arj ; that is, the terms for permutations σ ∈ Sn

for which σ(r) = j. We’ll prove that the sum of these terms is arjCij = sgn(σ)arjMij ,
and the result follows from taking the sum over all values of j.

If the term of detA given by some permutation σ includes arj , then this term equals
arj sgnσ times one entry per row and column of A(rj). This choice of entries is the same
as those in the term in detA(rj) given by the restricted permutation σ̃k; recall that for
every permutation σ ∈ Sn for which σ(k) has some definite value, there is one distinct
corresponding restricted permutation σ̃k.

If k + σ(k) is even, furthermore, then sgnσ = sgn σ̃k, and every term with σ̃k in
detA(rj) has the same sign as the corresponding term with σ in detA. In this case, the
sum of terms in detA that include arj is sgn(σ)arjMij = sgn(σ)arjCij . If k+ σ(k) is odd,
on the other hand, then corresponding terms in detA and detA(rj) have opposite signs,
so the sum of terms that include arj is − sgn(σ)arjMrj = arjCrj .

The Laplace expansion formula for expansion across columns follows from the fact
that detAT = detA (and transposing a matrix also transposes all the sub-matrices that
determine its first minors), so expansion along a column of A is equivalent to expansion
along a row of AT .

Remark. Note that ar1Cr1 + · · · + arnCrn is the dot product of the rth row of A and the
rth row of the matrix of cofactors. Equivalently, it’s the product of the rth row of A
and the rth column of adjA (which, remember, is the transposed matrix of cofactors).
We proved that this sum equals detA, so the diagonal entries of A adjA all equal detA.
Similarly, a1cC1c+ · · ·+ancCnc = detA is the dot product of the cth column of the matrix
of cofactors (equivalently, the cth row of adjA) and the cth column of A, so the diagonal
entris of (adjA)A are also detA.

To illustrate Laplace expansion, let’s rederive the formula for a 3 × 3 matrix deter-
minant using Laplace expansion in two ways, first expanding across the first row and
then across the second column. In the matrixa b c

d e f
g h i


the first minors along the top row are:

M11 =

∣∣∣∣e f
h i

∣∣∣∣ = ei− fh

M12 =

∣∣∣∣d f
g i

∣∣∣∣ = di− fg

M13 =

∣∣∣∣d e
g h

∣∣∣∣ = dh− eg
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The cofactors relate to the minors as C11 = M11 and C13 = M13 but C12 = −M12, so we
have an expression for the determinant:∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
= a(ei− fh)− b(di− fg) + c(dh− eg)

= aei+ bfg + cdh− afh− bdi− ceg

which matches the formula we computed directly from the sum-over-permutations
definition of the determinant on page 173.

If we expand along the second column instead, then we have minors

M12 =

∣∣∣∣d f
g i

∣∣∣∣
M22 =

∣∣∣∣a c
g i

∣∣∣∣
M32 =

∣∣∣∣a c
d f

∣∣∣∣
and the corresponding cofactors are C12 = −M12, C22 = M22, and C32 = M32. This gives
an expression for the determinant∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = −b

∣∣∣∣d f
g i

∣∣∣∣+ e

∣∣∣∣a c
g i

∣∣∣∣− h

∣∣∣∣a c
d f

∣∣∣∣
and you can check that this formula also works.

Laplace expansion is inefficient for large matrices: most computer algebra pro-
grams use a method based on LU decomposition instead. But it is sometimes useful
for computations by hand, especially when the matrix has a column or row of mostly
zeros that is convenient to expand along.

5.9 Matrix inversion via adjugate matrix

We remarked in the last section that Laplace’s formula shows that the diagonal entries
of A(adjA) and (adjA)A are all detA. The off -diagonal entries of both matrices, fur-
thermore, are all zero. That is, A(adjA) = (adjA)A = (detA)I , so (detA)−1 adjA is the
inverse matrix of A. Let’s prove this.

Proposition. The off-diagonal entries of A adjA and (adjA)A are all zero for any n×n matrix
A.

Proof. Let’s compute entry (k, ℓ) (where k ̸= ℓ) of A adjA; that is, ak1Cℓ1 + · · ·+ aknCℓn.
Let A′ be the matrix derived from A by replacing row ℓ with a copy of row k, and
denote the entries and cofactors of A′ by a′ij and C ′

ij .
The ℓth diagonal entry of A′ adjA′ is a′ℓ1C

′
ℓ1 + · · ·+ a′ℓnC

′
ℓn, which we proved equals

detA′ in the last section. And A′ has two identical rows, so detA′ = 0. As a′ℓj = akj for
all 1 ≤ j ≤ n, so 0 = ak1C

′
k1 + · · ·+ aknC

′
kn = 0.
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Furthermore, since A and A′ equal each other outside row ℓ, the cofactors Cℓj and
C ′

ℓj , which are the determinants of a matrix formed by eliminating row ℓ, equal each
other for every column j. So 0 = ak1C

′
k1 + · · · + aknC

′
kn = ak1Cℓ1 + · · · + aknCkn, which

is entry (k, ℓ) of A adjA,.
To prove that the off-diagonal entries of (adjA)A are also zero, you can write a

symmetrical proof that derives A′ from A by replacing a column of A rather than a
row, or simply note that once you know that A adjA is a multiple of the identity matrix
(that is, adjA is a multiple of A−1), it follows that (adjA)A must also be a multiple of
the identity matrix. (Remember that for generic functions f, g : X → X , f ◦ g is the
identity if and only if g ◦ f is the identity as well.)

Corollary. For any matrix A, we have (adjA)A = A adjA = (detA)I and so, if detA ̸= 0,
then A−1 = 1

detA
adjA.

5.10 Cramer’s rule

Determinants can be used for another theoretically neat (though seldom practical)
method of solving square systems of equations. Consider the generic 3× 3 system

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a32x3 = b2

a31x1 + a32x2 + a33x3 = b3

or, in matrix form Ax = b, a11 a12 a13
a21 a22 a23
a31 a32 a33

x1

x2

x3

 =

b1b2
b3

 .

The coefficients aij and bi are known; the variables xi are not.
If A is invertible, then x = A−1b = (detA)−1(adjA)b; that is,x1

x2

x3

 =
1

detA

 M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33

b1b2
b3


=

1

detA

 M11b1 −M21b2 +M31b3
−M12b1 +M22b2 −M32b3
M13b1 −M23b2 +M33b3


where Mij is the first minor created by removing row i and column j from A. Every
entry in this last vector is the Laplace expansion of the determinant of a matrix created
by replacing one column of A with the column vector b. To be precise,

M11b1 −M21b2 +M31b3 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
by Laplace expansion along the first column. Similarly,

−M12b1 +M22b2 −M32b3 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
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by Laplace expansion along the second column, and

M13b1 −M23b2 +M33b3 =

∣∣∣∣∣∣
a11 a12 b1
a12 a22 b2
a13 a32 b3

∣∣∣∣∣∣
by Laplace expansion along the third column. Thus, the variables x1, x2, x3 can each
be written as a ratio of determinants, the denominator of each ratio being detA and
the numerator being the determinant of the matrix derived from A by replacing the
coefficients for xi with the equation values bi:

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

x3 =

∣∣∣∣∣∣
a11 a12 b1
a12 a22 b2
a13 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
This result generalizes to square systems with any number of variables.
An alternate proof: let Xk be the matrix created by replacing column k of the iden-

tity matrix with x. Then detXk = xk, because if we choose one entry from each row and
column of Xk, then we have to choose the diagonal entry in every column other than k
to avoid getting a zero, and this forces the choice of diagonal entry in k as well. Further-
more, AXk is the matrix created by replacing column k in A with the vector of values
v (proof: remember that Ax = v and consider how A acts column-by-column on Xk,
whose columns except for k are standard basis vectors). So detXk = det(A−1AXk) =
det(AXk)/ detA, which is Cramer’s rule.
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Chapter 6

Eigendecompositions

In previous chapters, we’ve talked about matrix representations of linear maps, de-
termined by choosing bases for the domain and the codomain of the map. For linear
operators T : V → V , however, the theory of matrix representations is only interest-
ing if we apply an important restriction: we have to use the same basis of V in the
domain and in the codomain—that is, there must be some basis B such that whenever
x ∈ Coln(F) represents some vector v ∈ V relative to B, Mx also represents Tv relative
to B.

Now consider the relation on Matn×n(F) defined as J ∼ M if there’s some operator
T : V → V (where V is an n-dimensional vector space over F) that has both J and M as
matrix representations relative to different bases. If this is true, we’ll call these matrices
similar. The main problem of this chapter is to characterize this similarity relation.

It turns out that similarity is an equivalence relation. Similarity is clearly reflexive
and symmetric, and it turns out (we’ll prove it later) that it is also transitive: if matrices
A and B both represent one operator T1 relative to two different bases, and matrices
B and C both represent another operator T2 relative to a potentially different pair of
bases, then we can find a third operator that has both A and C as representations. The
basic questions that we will ask are the following:

1. Can we find a natural set of representatives for the equivalence classes defined
by the similarity relation? That is, is there some explicit formula for a set S of
n×n matrices such that every n×n matrix is similar to exactly one element of S?

2. Is there an algorithm to find out which representative element is similar to any
given matrix?

In this chapter, you’ll need to think at two layers of abstraction at once: both con-
crete matrix manipulations and high-level considerations of vector space and linear
operator axioms. Remember that these two considerations are closely related, and
we’ll point out frequently how findings about operators translated into matrices and
vice versa.

6.1 Invariant subspaces and block diagonal matrices

Let’s start by remembering a definition from section 3.1: an invariant subspace of an
operator T : V → V is any vector subspace W ⊆ V such that if w ∈ W , then Tw ∈ w
as well.

187
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Now suppose that V is an n-dimensional vector space over F, that B := {v1, . . . ,vn}
is a basis of V , and span{v1, . . . ,vm} is an m-dimensional invariant subspace of T for
some integer 1 ≤ m < n. (V and {0} are trivially invariant subspaces of any operator.)
Let’s write A ∈ Matn×n(T ) for the matrix representation of T with respect to B

What can we say about A? Remember that the kth row of A contains, in order,
the coefficients c1, . . . , cn such that Tvk = c1v1 + · · · + cnvn. If span{v1, . . . ,vm} is an
invariant subspace, then the coefficients cm+1, . . . , cn are all zero for 1 ≤ k ≤ m, so the
first m columns of A are zero below the first m rows.

If, furthermore, span{vm+1, . . . ,vn} is also an invariant subspace, then columns m+
1 through n must also have all of their nonzero entries in the rows m+1 through n. So
A would have a form that called block diagonal, in which all the nonzero entries of A are
contained in two square “blocks,” one of size m and one of size n−m, lined up along
the diagonal. For instance, if m = 3 and n = 5, then A must have the form

⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0 0
0 0 0 ⋆ ⋆
0 0 0 ⋆ ⋆


where ⋆ denotes a possibly nonzero entry. If T has a matrix representation of this
form relative to some basis {v1, . . . ,v5}, then span{v1,v2,v3} and span{v4,v5} are both
invariant subspaces of T .

Knowing that a matrix A has block diagonal form—or, equivalently, that the do-
main of the corresponding operator T can be divided into a direct sum of invariant
subspaces—simplifies many calculations that we can conduct on each block separately.

For instance, if A has the block form
[
B 0
0 C

]
, then powers of A have the block form

An =

[
Bn 0
0 Cn

]
. The computation required to multiply two n × n matrices scales up

faster than the number of matrix entries (the straightforward algorithm that computes
dot products of every row and column takes O(n3) time, and though more complicated
algorithms can do better than this, there is no known O(n2) algorithm), so we can save
a lot of time by operating on smaller submatrices.

Eigenspaces and generalized eigenspaces are also invariant spaces, and the blocks
that such spaces contribute to matrix representations of operators have particularly
simple forms:

• Suppose W := span{v1, . . . ,vm} is an m-dimensional eigenspace with eigenvalue
λ: that is, Tvi = λvi for 1 ≤ i ≤ n. Then the matrix representation of T |W
with the basis {v1, . . . ,vm} (and, therefore, the upper left corner of any matrix
representation of T relative to a basis that has v1, . . . ,vm as its first n vectors) is

λ 0 · · · 0
0 λ · · · 0
...

... . . . ...
0 0 · · · λ

 = λI,

a diagonal matrix with all entries of λ on the diagonal.
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• Suppose W := span{v1, . . . ,vm} is a GES of order m, and the operator T − λ sets
up a chain vm 7→ vm−1 · · · 7→ v1 7→ 0: that is, Tvi = λvi + vi−1 for 1 ≤ i ≤ m− 1,
and Tv1 = λv1. Then the matrix representation of T |W relative to {v1, . . . ,vm} is

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ.


This matrix has λ on the diagonal and 1 on the superdiagonal: the entries at posi-
tions (i, i+ 1) for 1 ≤ i ≤ m− 1.

Detemrinants of block diagonal matrices have especially easy to compute, as a re-
sult of the following proposition:

Proposition. The determinant of a block diagonal matrix is the product of the determinants of
the individual blocks.

Proof. It’s enough to prove this for a matrix containing two blocks. (You can prove the
general case for three or more blocks by combining all the blocks but one into a larger
block and then applying the two-block case recursively.)

Suppose that an n×n matrix M has block diagonal form
[
A 0
0 B

]
, where the blocks

A and B are square and have sizes m and n−m. (From now on, whenever we mention
a matrix in block diagonal form, it will go without saying that the diagonal blocks are
square.) If either A or B has linearly dependent rows, then the corresponding rows
in M must also be linearly dependent, so detM = detA detB = 0. Otherwise, A has
the m × m identity matrix as its RREF and B has the (n − m) × (n − m) as its RREF.
Applying the steps of A’s Gauss–Jordan reduction to the top m rows of M will reduce
the top left block of M to the identity matrix without disturbing the block B or either
of the rectangular zero blocks at top right and bottom left, and similarly applying B’s
Gauss–Jordan reduction to the bottom n − m rows of M (adding m to row indices as
necessary) reduces the bottom right block of M to the identity matrix.

Thus, the row reduction of M to the identity is the composition of the steps of the
row reductions of A and B, and since the determinant of an invertible matrix is the
product of the determinants of the elementary row-operation matrices corresponding
to these steps (that is, λ for every scaling ri 7→ λri, 1 for every shear, and −1 for every
swap), so detM = detA detB.

We can rephrase this result in operator language as:

Corollary. Suppose T : V → V is an operator that has two invariant subspaces U and W ,
with U ⊕W = V . Then detT is the product of the determinants of the restricted maps detT |U
and detT |W , where U and W are treated as vector spaces in their own right.

Proof. Write T in matrix form relative to a basis of V whose first several elements are
a basis of U and whose remaining elements are a basis of W . The resulting matrix is
block diagonal, with the upper left block giving a representation of T |U and the lower
right block giving a representation of T |W , and the determinants of these blocks are
also the determinants of the operators themselves.
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6.2 Translations between bases

If we have one matrix representation of an operator T : V → V , it’s possible that we
could find a much simpler matrix representation of the same operator if we can find
some eigenvectors and generalized eigenvectors of T , which would let us divide V at
least partially into invariant subspaces. The question of how to find these eigenvectors
will occupy us for the rest of this chapter.

Before we start looking at this question, though, let’s think about a slightly more
general problem: suppose that some operator T : V → V on an n-dimensional space
V has matrix form M1 relative to some basis B1 = {v1, . . . ,vn}. We want to find the
matrix representation M2 of T relative to some other basis B2 = {w1, . . . ,wn}. Suppose
also that we know the formulas for all the vectors in B2 in terms of the vectors in B1:
that is, we know the coefficients cij for 1 ≤ i, j ≤ n such that wi = ci1v1 + · · ·+ cinvn.

Now write S12 : Coln(F) → Coln(F) for the function that takes the column vector
representation of a vector relative to the basis B1 and produces the column vector rep-
resentation of the same vector relative to the basis B2. That is, if u = a1v1+ · · ·+anvn =

b1w1 + · · ·+ bnwn, then S12

a1...
an

 =

b1...
bn

. Write S21 for the inverse function that trans-

lates B2 representations to B1 representations.
You should be able to convince yourself that S12 and S21 are linear maps: adding

two vectors means adding their representations with respect to any basis, and ditto
for multiplying one vector by a scalar. Every linear map from Coln(F) to itself is just
multiplication by an n× n matrix, so we can equate S12 and S21 with the matrices that
represent them relative to the standard basis on Coln(F).

So what are the matrices S12 and S21? Let’s first look at S21. Remember that column
j of any matrix M is Mej , where ej is the jth standard basis column vector. Relative
to the basis B2, ej represents wj , so the column vector S21ej (that is, the jth column of
S21) has to be the representation of wj = c1jv1+ · · ·+ cnjvn relative to the basis B1; that

is, the jth column of S21 is

c1j...
cnj

. This means

S21 =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

... . . . ...
cn1 cn2 · · · cnn

 .

That is, to translate from one basis to another, write a matrix whose columns are the
coefficients of each vector of the origin basis relative to the destination basis. If a ∈
Coln(F) is a column vector, then we can interpret the matrix product S21a in two ways:

1. a represents some element u of V relative to the basis {v1, . . . ,vn}, and S21a rep-
resents, relative to the same basis, the different vector produced by giving u to the
linear operator that sends every basis element vi to the corresponding wi.

2. a represents some element u of V relative to the basis {w1, . . . ,wn}, and S21a
represents, relative to the different basis {v1, . . . ,vn}, the same vector u.
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Now that we have S21, we can compute the matrix S12 = S−1
21 by matrix inversion.

So if M1 represents T relative to B1, then M2 := S12M1S21 = S−1
21 M1S21 represents

T relative to B1. Remember that matrix products act right to left: first S12 translates a
representation of an input vector v from B2 to B1, then M1 gives the output Tv relative
to B2, then S1.

This result gives us another method of characterizing the similarity relation on ma-
trices. Remember that A and B, by definition, are similar if they represent the same
transformation T relative to different bases. We can equivalently define A and B to
be similar if there is some invertible matrix S such that SAS−1 = B. (In this case, S
translates from the basis used for A to the basis used for B; equivalently, its columns
represent the basis vectors used for A in terms of the basis used for B.) From this,
we can use the general fact that (M1M2)

−1 = M−1
2 M−1

1
1 to prove that the similarity

relationship is transitive: if A = S1BS−1
1 and B = S2CS−1

2 , then A = S1S2CS−1
2 S−1

1 =
(S1S2)C(S1S2)

−1. That is, if A is similar to B via translation matrix S1, and B is similar
to C via S2, then A is similar to C via S1S2.

Usually, when we use basis translations over Fn, one basis will be the standard basis
and the other basis will be clear from context, so we won’t use subscripts on translation
matrices. Typically, S denotes translation from an alternate basis to the standard basis
(and its columns are the coefficients of the alternate basis with respect to the standard
basis), and S−1 denotes translation out of the standard basis.

Two final notes:

1. If M = SJS−1, then detM = detS det J detS−1, and of course detS detS−1 = 1.
So similar matrices have equal determinant.

2. Changes of basis and matrix multiplication are compatible operations. If A =
SBS−1 and C = SDS−1, then AC = SBS−1SDS−1 = SBDS−1; that is, if A and
B represent the same map relative to two different bases, and C and D represent
another map relative to the same pair of bases, then AC and BD also represent
the same map relative to the same pair of basis. This result is useful in computing,
for example, matrix exponents: if M is a matrix and J is a diagonal (or almost-
diagonal) matrix similar to J , and M = SJS−1, then Mn = SJnS−1, and finding
Jn may require far less computation than finding Mn.

Now let’s use our theory of basis translations to work out a few example problems
in which we find the form for a linear operator T : R2 → R2 based on its effects on a
specific nonstandard basis of R2.

Example 1. Suppose that T : R2 → R2 has two eigenvectors v1 = (3, 4), with eigen-
value −1, and v2 = (2, 1), with eigenvalue 3. What’s the matrix representation for T
relative to the standard basis?

Let’s start by setting up the matrix factorization M = SJS−1, where J is the repre-
sentation of T relative to the basis {v1,v2} and S translates from {v1,v2} to the stan-
dard basis {e1, e2}. The columns of S are the representation of the origin basis vectors

1Proof: note that the map represented by M1M2 applies M2 first and then M1, so the reverse has to ap-
ply M1 first and then M2. Alternatively, note that (M1M2)(M

−1
2 M−1

1 ) = M1(M2M
−1
2 )M−1

1 = M1M
−1
1 =

I because matrix multiplication is associative. Remember that in general, M−1
2 M−1

1 ̸= M−1
1 M−1

2 because
matrix multiplication is generally not commutative.
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{v1,v2} in terms of the destination basis vectors {e1, e2}, so

S =

[
3 2
4 1

]
.

From the general 2 × 2 matrix inversion formula
[
a b
c d

]
=

1

ad− bc

[
d −b
−c a

]
we can

compute

S−1 = −1

5

[
1 −2
−4 3

]
=

[
−1

5
2
5

4
5

−3
5

]
.

Finally, since Tv1 = −v1 and Tv2 = 3v2, the matrix J representing T relative to the
basis {v1,v2} is just [

−1 0
0 3

]
,

so the representation of T relative to the standard basis is

M = SJS−1 =

[
3 2
4 1

] [
−1 0
0 3

] [
−1

5
2
5

4
5

−3
5

]
=

[
3 2
4 1

] [
1
5

−2
5

12
5

−9
5

]
=

[
27
5

−24
5

16
5

−17
5

]
.

You can check that M
[
3
4

]
=

[
−3
−4

]
and M

[
2
1

]
=

[
6
3

]
.

Example 2. Suppose that T : R2 → R2 satisfies T (3, 4) = (2, 1) and T (2, 1) = (3, 4).
What is the matrix representation for T relative to the standard basis?

In this case, relative to the basis vectors v1 = (3, 4) and v2 = (2, 1), T has the matrix
representation

J =

[
0 1
1 0

]
.

The basis translation matrices S and S−1 are the same as before, so the standard basis
representation M is

M = SJS−1 =

[
3 2
4 1

] [
0 1
1 0

] [
−1

5
2
5

4
5

−3
5

]
=

[
3 2
4 1

] [
4
5

−3
5

−1
5

2
5

]
=

[
2 −1
3 −2

]
.

Example 3. Suppose that T (3, 4) = (1,−1) and T (2, 1) = (−2,−5). What’s the stan-
dard basis representation for T ?

In this case, the provided values of T don’t give us an easy matrix representation

that uses {v1,v2} as the basis for domain and codomain. But note that
[
1 −1
−2 −5

]
—that

is, the matrix that sends
[
1
0

]
to
[
1
−1

]
and

[
0
1

]
to
[
−2
−5

]
—represents T with input vectors

represented relative to {v1,v2} and output vectors represented relative to the standard

basis. That is, with our matrix decomposition M = SJS−1, we have
[
1 −1
−2 −5

]
= SJ

and so

M = (SJ)S−1 =

[
1 −1
−2 −5

] [
−1

5
2
5

4
5

−3
5

]
=

[
−1 1
−18

5
−11

5

]
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6.3 Elements of the theory of polynomials

Now that we’ve seen the general theory of translating between different matrix repre-
sentations of a linear operator, our goal will be finding a way to find a representation as
close to a diagonal matrix as possible. Since elements in a diagonal matrix are eigenval-
ues, we’ll also need a way to compute the eigenvalues of a matrix. It turns out that we
can compute from any square matrix M a special polynomial called the characteristic
polynomial whose roots are the eigenvalues of M .

To appreciate the characteristic polynomial fully, we’ll need a small detour into the
theory of polynomials. We’ll need two principal results:

1. If you can prove that a set of polynomials satisfy three simple axioms that make
it a special kind of set called an ideal, then this set must contain every multiple of
a special element called the minimal polynomial, and nothing else.

2. Every polynomial with complex coefficients has a complex root. (This is the fun-
damental theorem of algebra, which you likely saw mentioned in high school math-
ematics but may not have seen proved.)

6.3.1 Polynomial ideals

First, some definitions. A polynomial in one variable x with degree n is an expression
of the form cnx

n+ cn−1x
n−1+ · · ·+ c1x+ c0, where the coefficients c0, . . . , cn are in some

specified field F and cn ̸= 0. The coefficient cn attached to the highest power of the
variable x is called the leading coefficient, and if this equals 1, then the entire polynomial
is monic. Note that nonzero constant polynomials have degree zero; by convention, the
constant zero polynomial has degree −∞.

Denote by F[x] the set of polynomials of any degree with coefficients in F. We can
add and multiply polynomials in the way that you’re used to: for instance, (x + 1) +
(2x2−x) = 2x2+1 and (x+1)(2x2−x) = 2x3+x2−x. We can also scale polynomials by
a constant factor c ∈ F (which is equivalent to multiplying by the zero-degree constant
polynomial p(x) = c) and subtract polynomials from each other (which is equivalent
to multiplying one of the polynomials by −1 and then adding them).

Finally, an ideal of F[x] is a subset I ⊆ F[x] that satisfies these three axioms:

1. Non-emptiness: I has at least one element. (As a consequence of axiom 3, this
means I must contain the zero polynomial.)

2. Closure under addition by other ideal elements: If p(x) and q(x) are two (possibly
identical) elements of I , then their sum p(x) + q(x) is also in I .

3. Closure under multiplication by arbitrary elements: If p(x) ∈ I , then p(x)q(x) ∈ I for
any other polynomial q(x) ∈ F[x] (even if q(x) /∈ I). Note that this includes the
case when q is constant or zero.

This axiomatic definition may seem complicated, but any set of polynomials that
we can prove satisfies these three axioms turns out to have a simple structure:

Theorem. Every ideal I ⊆ F[x] is the set of multiples of some element p(x) ∈ F[x], called a
primitive element of I . That is, I = {p(x)q(x) : q(x) ∈ F[x]}.
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Proof. If I contains any polynomial p, then it must also contain the monic polynomial
that comes from dividing all coefficients of p by the leading coefficient. Now let’s
consider two cases: either I contains a nonzero constant polynomial, or it doesn’t.

If I contains a nonzero constant polynomial p(x) = c, then (by axiom 3) it also
contains c−1p(x), which is the constant polynomial with value 1. Also by axiom 3, it
must contain all multiples of 1 by any element of F[x]. This set equals F[x], and I can’t
be any larger than F[x], so I = F[x] and also equals the set of multiples of the constant
polynomial 1.

The other case is when the smallest degree of any nonzero polynomial in I is k ≥ 1.
We’ll proceed in three steps, the last of which establishes the claim that every polyno-
mial p(x) ∈ I has to be a multiple of some specific degree-k polynomial by induction
on the degree of p:

1. I contains exactly one monic polynomial of degree k. Proof: if I has at least one poly-
nomial p(x) = ckx

k + · · ·+ c1x+ c0 of degree k, then dividing that polynomial by
its leading coefficient (i.e. multiplying it by the constant polynomial q(x) = c−1

k )
creates a monic polynomial that must also be in I by axiom 3. If there were two or
more monic polynomials of degree k in I , though, then subtracting one polyno-
mial from the other would cancel the xk terms and leave a nonzero polynomial
with degree strictly less than k. But this polynomial would also be in I by ax-
iom 2—a contradiction, as we assumed k was the smallest degree of any nonzero
polynomial in I .

2. Every degree-k polynomial in I is a scalar multiple of every other. Proof: if any two
degree-k polynomials in I were not scalar multiples of each other, then dividing
both polynomials by their leading coefficients would give distinct monic degree-
k polynomials, but there can only be one monic polynomial of degree k in I .

3. Let m(x) be the monic polynomial of minimal degree in an ideal I , and let k be the degree
of m. Suppose that for some integer n ≥ k, every polynomial in I of degree at most n
is a scalar multiple of m(x). Then so is every polynomial in I of degree n + 1. Proof:
let p(x) be a degree-n + 1 element of I , and let c be its leading coefficient. Then
p(x) and cxn+1−km(x) both have leading terms cxn+1, so q(x) := p(x)− cxn+1m(x)
has degree at most n. So by the induction hypothesis, q(x) is a multiple of m(x).
Thus, p(x) = q(x) + cxn+1−km(x) is the sum of two multiples of m(x), so it has to
be a multiple of m(x) itself.

In the vocabulary of abstract algebra, this is a proof that F[x] is a principal ideal
domain.

6.3.2 Algebraically complete fields

An algebraically complete field is one in which every polynomial has a root: if p is a
nonconstant polynomial with coefficients in an algebraically complete field F, then
there’s guaranteed to be some x ∈ F such that p(x) = 0. As a corollary, any such
polynomial can be factored completely into the form (x− c1)(x− c2) · · · (x− cn), where
c1, . . . , cn are constants in F.
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The most important algebraically complete field is C, the complex numbers. The
result that C is algebraically complete is often called the fundamental theorem of algebra.
In high school algebra, you likely saw it stated, but not quite proved. Here is the formal
statement:

Theorem. If p(x) ∈ C[x] is a nonconstant polynomial, then there’s at least one complex value
z ∈ C such that p(z) = 0.

Proof. A completely rigorous proof would require introducing formal topology, but
the fundamental geometric idea is quite intuitive.. First, remember the standard way
to visualize the complex plane C, with the x-axis representing the real component of a
number and the y-axis representing the imaginary component.

Now suppose that p is a monic polynomial. (The theorem for general p imme-
diately reduces to the case for monic p if you divide p by its leading coefficient, be-
cause factoring a constant out of a polynomial doesn’t change the roots.) Write p(z) =
zn + cn−1z

n−1 + · · ·+ c1z + c0. If c0 = 0, then p(0) = 0, and we’re done. So let’s consider
only the case where c0 ̸= 0.

Now imagine tracing the value of z = reiθ in the complex plane as r ≤ 0 stays fixed
and θ increases from 0 to 2π. What does the graph of f(z) looks like for these values of
z? It’s hard to say in general, but if r is very large or very small, we can draw a couple
of conclusions:

1. Suppose r and thus z are extremely small, so that cnz
n + cn−1z

n−1 + · · · + c1z
is much smaller than c0. Then the image of f(reiθ) for varying θ will be a tiny
squiggle around c0 that doesn’t go anywhere near the origin.

2. Suppose r and thus z are extremely large, so that cnzn has a much greater absolute
value than all of the terms cn−1z

n−1+· · ·+c1z+c0. Remember that the map z 7→ czn

maps reiθ to crneinθ, so as θ increases from 0 to 2π (that is, z goes around the origin
once), zn goes around the origin n times. So if cnzn is much larger than all of the
other terms in p(z), then as z goes around the origin once, p(z) will trace a very
large, nearly circular loop that wraps n times around the origin. The non-leading
terms in p(z) will mean that this loop won’t be a perfect circle, but just by making
r larger, we can make these deviations can be made as small a fraction of the
distance separating the loop from the origin as we want, and the graph of p(reiθ)
can be made to look as close to a circle when zoomed out as we want.

So as r goes from very small to very large, the graph of p(reiθ) has to go from a
small squiggle around c0 that has the origin outside to a looping path that has the
origin inside. It follows (more or less—defining “inside” and “outside” turns out to be
harder than you might think!) that at some intermediate value r, the graph of p(reiθ)
has to pass through the origin; that is, there is some value z0 = reiθ such that p(z0) = 0.

Corollary. Every degree-n polynomial p ∈ C[x] can be written as p(z) = c(z − r1)(z −
r2) · · · (z − rn) where r1, . . . , rn ∈ C are (possibly not all distinct) zeros of n.

Proof. Obvious if n = 1. Otherwise, we know that p has at least one root r1, and p(z)
must be a multiple of z − r1. Apply the theorem again to p(z)/(z − r1), which is a
degree-n− 1 polynomial and must have another root r2, and so on.
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Polynomials that split entirely into a product of terms of the form x − ci are much
easier to deal with than general polynomials, which is why many results about poly-
nomials with real coefficients are most easily proved by treating them as polynomials
with complex coefficients instead.

6.4 Characteristic polynomials

6.4.1 Defined

Let’s now recall a few definitions and theorems from previous sections. Throughout,
T : V → V is a linear operator on a vector space over a field F.

1. A scalar λ ∈ F is an eigenvalue of T if the operator T − λI , or equivalently its
negative λI − T , is not injective. The corresponding eigenvectors of T are all the
elements in the kernel of λI − T .

2. If V is a finite-dimensional space, then we can define the determinant of any matrix
representation of T . Every matrix representation has the same determinant (recall
detSJS−1 = det J), so we can define detT to be the determinant of any matrix
that represents T .

3. The determinant of any transformation T is zero if and only if T has nonzero
kernel. By the same token, det(xI − T ) = 0 if and only if x is an eigenvalue of T .

The good news is that det(xI−T ) turns out to be a monic degree-n polynomial that
we call the characteristic polynomial of T and denote χT (x). We’ve shown a result that’s
important enough to call out as a proposition:

Proposition. λ is an eigenvalue of T if and only if it is a root of the characteristic polynomial
χT : that is, if χT (λ) = 0

6.4.2 Computing matrix diagonalizations

The characteristic polynomial is an essential tool for finding diagonal matrices similar
to a given matrix because it reduces the problem of computing matrix eigenvalues to
computing the roots of a polynomial. Consider, as an example, the transformation
T : R2 → R2 with the formula T (a, b) = (a + 2b, 5a − 2b). With respect to the standard
basis, T has the matrix representation [

1 2
5 −2

]
so xI − T has the matrix representation

x

[
1 0
0 1

]
−
[
1 3
4 −2

]
=

[
x− 1 −2
−5 x+ 2

]
.

From the generic 2× 2 determinant formula
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc, therefore,

χT (x) =

∣∣∣∣x− 1 −2
−5 x+ 2

∣∣∣∣ = (x− 1)(x+ 2)− 10 = x2 + x− 12 = (x+ 4)(x− 3).
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So the eigenvalues of T are −4 and 3. To find the corresponding eigenvectors, we can
use the general RREF-based method for finding matrix nullspaces that we outlined
on page 130: substitute the necessary value for x in the matrix representation of xI −
T , then reduce to RREF, insert and remove rows of zero to line up all pivots on the
diagonal, and take all non-pivot columns as a basis for the nullspace.

For x = 3, for instance, we need to find the nullspace of[
2 −2
−5 5

]
,

which the elementary row operations r1 7→ 1
2
r1 followed by r2 7→ r2 + 5r1 bring to the

RREF [
1 −1
0 0

]
.

Every pivot in this matrix (that is to say, the sole pivot in the first row) is already

on the diagonal, so the pivotless second column gives a basis column vector
[
−1
−1

]
∈

Col2(R) to represent the eigenspace with eigenvalue 3. Since we’re working with rep-
resentations relative to the standard basis, this column vector directly corresponds to
(−1,−1) ∈ R2 (though (1, 1) is probably a nicer choice).

By a similar token, the eigenvectors with eigenvalue −4 are represented by the
nullspace of [

−5 −2
−5 −2

]
,

which reduces to [
1 2

5

0 0

]
and thus has

[
2
5

−1

]
as a basis column vector for its nullspace, corresponding to (2

5
,−1) ∈

R2 (though, again, (2,−5) is just as valid a choice). You can confirm for yourself that
T (1, 1) = (3, 3) and T (2,−5) = (−8, 20).

Note that we’ve found a basis v1 = (1, 1),v2 = (2,−5) for R2 that contains only
eigenvectors of T . With respect to this basis, T has the diagonal matrix representation[
3 0
0 −4

]
, and we can even write a full M = SJS−1 matrix diagonalization[

1 3
4 −2

]
=

[
1 2
1 −5

] [
3 0
0 −4

] [
−5

7
−2

7

−1
7

1
7

]
where on the right-hand side, the rightmost matrix translates column vector represen-
tations relative to the standard basis to the column vector representations of the same
element of R2 relative to {v1,v2}, the middle matrix expresses T on column vector rep-
resentations relative to {v1,v2}, and the left matrix translates back to column vectors
relative to the standard basis.

Two important facts about characteristic polynomials need to be underscored:

1. The characteristic polynomial of an operator is the same no matter what matrix
basis you use to compute it, and (as a result) similar matrices have the same char-
acteristic polynomial. The identity matrix and all its multiples stay the same rela-
tive to any basis, so if M1 = SM2S

−1, then xI−M1 = x(SIS−1)−SM2S
−1 = S(xI−
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M2)S
−1. Taking determinants and using the multiplicativity of the determinant

gives det(xI −M1) = detS det(xI −M2) detS
−1, and of course detS detS−1 = 1.

The converse isn’t true: matrices with the same characteristic polynomial don’t

have to be similar, with
[
1 0
0 1

]
and

[
1 1
0 1

]
being one simple example.

2. The characteristic polynomial is always a monic polynomial of degree n: every
term in the sum over permutations of the determinant involves a product of n
constants or degree-1 polynomials, and the only term that picks all degree-1 poly-
nomials (and thus produces a degree-n result) is the choice of elements down the
diagonal, all of which are monic.

One final point that will be worth remembering later. Remember that if T has a
matrix representation with all real numbers, then:

1. xI − T has a matrix representation with all real numbers whenever x is real.

2. We can extract eigenvectors with eigenvalue x from the RREF of this matrix with
the usual nullspace calculation algorithm discussed in Section 4.8.

3. Gauss–Jordan elimination doesn’t introduce complex numbers into a real matrix.

The following proposition is an immediate consequence:

Proposition. If a matrix M with all real entries has a real eigenvalue with multiplicity k
(meaning kI −M has nullspace dimension n), then we can find k linearly independent eigen-
vectors with all real entries.

Proof. See above.

6.4.3 Generalized eigenspace dimensions

We can make an even stronger statement connecting characteristic polynomials to
eigenvectors than that the roots of the characteristic polynomial are also eigenvalues
of the operator. In fact, the multiplicity of λ as a root of χT equals the dimension of
the largest generalized eigenspace of T with eigenvalue λ. That is, if (x − λ)2 (but not
(x − λ)3) is a factor of χT , then the largest GES with eigenvalue λ has dimension 2; if
(x− λ)3 but not (x− λ)4 is a factor, then GES has dimension 3; and so on.

We’ll need a few preliminary propositions to prove this:

Proposition. Suppose T : V → V is an operator on a finite-dimensional vector space V , and
suppose further that V can be decomposed as a direct sum V = U ⊕ W where U and W are
invariant subspaces of T . Write χV for the characteristic polynomial of T on all of V , and
χU and χW for the characteristic polynomials of the restricted maps of T on U and W . Then
χV (x) = χU(x)χW (x).

Proof. Remember from page 87 that if U and W are invariant spaces of T , then they’re
also invariant spaces of any polynomial of T , such as T − x for any scalar x. So the
result comes just from noting that χV (x) = det(T − x) (and similarly for the restricted
maps) and applying the result on page 189 to get det(T−x) = det(T |U−x) det(T |W−x).
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Translated into matrix language:

Corollary. The characteristic polynomial of a block diagonal matrix is the product of the poly-
nomials of the blocks.

Proof. Each block of a block diagonal matrix represents a restricted map on an invariant
subspace.

Proposition. If T : V → V is an operator on a vector space such that kerT = kerT 2, then
the sum kerT +imT is direct. If V is finite-dimensional, furthermore, then kerT ⊕ imT = V .

Proof. If the sum kerT+imT isn’t direct, then there’s some vector w that’s in both kerT
and imT . Choose any v ∈ V such that Tw = v. Then Tv = w and T 2v = Tw = 0, so
v is an element of kerT 2 that’s not in kerT , a contradiction. So kerT + imT is a direct
sum.

By rank–nullity, dimkerT + dim imT = dimV , and dim(kerT ⊕ imT ) = dimkerT +
dim imV because the dimension of a direct sum is the sum of the dimensions of its
constituents. So kerT ⊕ imT is a (dimV )-dimensional subspace of T ; i.e. it equals V .

Proposition. Let V be any vector space, let T be any operator on V , let λ be any scalar, and
let k be any positive integer. Then ker(T − λ)k and im(T − λ)k are both invariant subspaces of
T .

Proof. ker(T − λ)k is the set of GEVs of T with eigenvalue λ and order ≤ k, so if v ∈
ker(T − λ)k, then Tv = λv + w, where w is also a GEV with eigenvalue λ and order
≤ k − 1. So λv +w is the sum of two GEVs with eigenvalue λ and order ≤ k, so it also
has order ≤ k. So we’ve established that ker(T − λ)k is an invariant subspace of T .

To see that im(T − λ)k is invariant, take v ∈ im(T − λ)k arbitrary and choose u such
that (T − λ)ku = v. Then Tv = T (T − λ)ku. Since T and T − λ commute, we can can
rewrite Tv as (T − λ)k(Tu), which is clearly an element of im(T − λ)k. This establishes
that im(T − λ)k is an invariant subspace of T .

Proposition. Suppose V is an n-dimensional vector space, and T is an operator on V such
that every element of V is a GEV with the same eigenvalue λ. Then χT (x) = (x− λ)n.

Proof. Let B be a Jordan basis for V . (See section 3.8 if you need a reminder of what a
Jordan basis is, and a proof of their existence.) Number the elements of B as v1, . . . ,vn

so that the chains created by application of T−λ run over a contiguous range of indices
from highest to lowest: that is, (T − λ)v1 = 0 and, for every integer 2 ≤ i ≤ n, either
(T − λ)vi = vi−1 or (T − λ)vi = 0).

Relative to this basis, T has the matrix representation

λ c1 0 0 · · · 0 0
0 λ c2 0 · · · 0 0
0 0 λ c3 · · · 0 0
0 0 0 λ · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · λ cn−1

0 0 0 0 · · · 0 λ


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where ci = 0 if (T − λ)vi+1 = 0, and ci = 1 if (T − λ)vi+1 = vi. Regardless of the values
of c1, . . . , cn−1, the characteristic polynomial

χT (x) = det



x− λ c1 0 0 · · · 0 0
0 x− λ c2 0 · · · 0 0
0 0 x− λ c3 · · · 0 0
0 0 0 x− λ · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · x− λ cn−1

0 0 0 0 · · · 0 x− λ


is the determinant of an upper triangular n×n matrix in which every diagonal element
is x− λ, so it equals (x− λ)n.

With all these results in hand, our main theorem is quick to establish:

Theorem. Let V be a finite-dimensional vector space, T : V → V a linear operator, and λ any
scalar. Let U be the subspace of V consisting of every GEV with eigenvalue λ. Then dimU is
the largest integer k such that (x− λ)k divides the characteristic polynomial χ(x) of T .

Proof. Remember that ker(T − λ)h is the set of GEVs with eigenvalue λ and order ≤
h. So if we let h be any integer larger than the maximum order of any GEVs with
eigenvalue λ (which must be finite: remember from page 99 that an n-dimensional
space can’t have GEVs of order greater than n), then ker(T − λ)h = ker(T − λ)2h and
(by the previous proposition) ker(T − λ)h ⊕ im(T − λ)h = 0.

Denote U = ker(T−λ)h (this subspace is every GEV with eigenvalue λ; i.e. the same
space as the U in the theorem statement) and W = im(T −λ)h. Both U and W , as we’ve
just proved, are invariant subspaces of T . So χ(x) = χU(x)χW (x) where χU , χW are the
characteristic polynomials of the restricted operators T |U , T |W .

Every element of U is a GEV of T |U with eigenvalue λ, so χU(x) = (x−λ)k where k =
dimU . Furthermore, W can’t contain any nonzero GEVs with eigenvalue λ, because
we defined U to contain all of them and U ∩ W = {0}. In particular, W can’t contain
any nonzero ordinary eigenvectors with eigenvalue λ, so λ is not a root of χW . So the
exponent of x−λ in χ(x), when fully factored, equals the exponent of x−λ in χU , i.e. k.

Note that all the results in this section hold even for vector spaces over an alge-
braically incomplete field: we didn’t assume anywhere that characteristic polynomials
have to factor completely into monomials (x− λ1) · · · (x− λn).

6.5 Matrix triangularization

If V is a finite-dimensional vector space over the complex numbers C (from now on
we’ll say “complex vector space” rather than “vector space over the complex num-
bers”), then every linear operator T : V → V has a characteristic polynomial with
complex coefficients whose roots are the eigenvalues of T . The Fundamental Theorem
of Algebra states that every polynomial with complex coefficients has a complex root.
We’ve therefore proved the following result:
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Lemma. Every operator T over a finite-dimensional complex vector space has an eigenvalue.

Proof. Just given.
Alternate proof without characteristic polynomials: if v is some arbitrary nonzero

vector in an n-dimensional space, then the n + 1 vectors v, Tv, . . . , T nv are linearly
dependent: that is, there are some constants c0, . . . , cn−1 such that T nv + cn−1T

n−1v +
· · · + c1Tv + c0v = 0. Write p(x) for the polynomial xn + cn−1x

n−1 + · · · + c1x + c0 and
factor it as (x−h1)(x−h2) · · · (x−hn) (we can do this factoring because C is algebraically
complete). Then p(T )v = (T − λ1) · · · (T − hn)v = 0.

If you apply the maps T − h, T − hn− 1, . . . , T − h one at a time to v, there must be
some point at which the result becomes 0: that is, (T − hi+ 1) · · · (T − hn)v ̸= 0, but
(T − hi) · · · (T − hn)v = 0 This means that (T − hi+1) · · · (T − h)v is an eigenvector of
T , with eigenvalue hi. (Or, possibly, (T − λn)v = 0, in which case hn is an eigenvalue.)

Remark. It’s essential that V be finite-dimensional. For an example of an operator
on an infinite-dimensional space that has no eigenvalues, take CN, the space of in-
finite sequences of complex numbers, and the right-shift operator R(a1, a2, a3, . . .) =
(0, a1, a2, a3, . . .). For any sequence v ∈ CN with at least one nonzero entry, Rv also has
a nonzero entry (so v can’t have eigenvalue 0) but always starts with one more entry
of zero than v does (so Rv can’t be a nonzero multiple of v).

This is an important building block for another result: the fact that every linear op-
erator over a finite-dimensional complex vector space has a triangular representation.

Theorem. Let V be an n-dimensional complex vector space, and let T : V → V be a linear
operator. There exists a set of vectors v1, . . . ,vn such that Tvk ∈ span{v1, . . . ,vk} for every
integer 1 ≤ k ≤ n.

Proof. Let V be an n-dimensional complex vector space, let v1 be an eigenvector of
T : V → V , and let W1 ⊂ V be a complement of span{v1}, so every vector v ∈ V can
be written in one unique way as v = c1v1 + c2w for some w ∈ W1. (Remember: we
can always extend a linearly independent set, such as {v1}, to a full basis of V , and
then take the vectors that we added as a basis of W .) Let P1 be the projection map
P (c1v1 + c2w) = c2w from V onto W1.

The map P1 ◦ T |W1 , the composition of T and P1 with the domain restricted to W1,
maps the (n − 1)-dimensional complex vector space W1 to itself. This map must have
an eigenvector v2 ∈ W1, and if v2 is an eigenvector of P1 ◦ T , then Tv2 ∈ span{v1,v2}.

We can continue in the same way. Pick some subspace W2 ⊂ V that is the com-
plement of span{v1,v2}; that is, such that every v ∈ V can be written uniquely as
v = c1v1 + c2v2 + c3w for some w ∈ W2. Let P2 be the projection map P2(c1v1 + c2v2 +
c3w) = c1v1 + c2v2 and choose some eigenvector v3 ∈ W2 of P2 ◦ T |W2 .

Corollary. Every linear transformation T : V → V has an upper triangular and a lower
triangular matrix representation.

Proof. The basis {v1, . . . ,vn} defined in the previous theorem gives an upper triangular
matrix representation for T , and the reversed basis {vn, . . . ,v1} gives a lower triangular
matrix representation.
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6.6 Minimal polynomials

6.6.1 Minimal polynomials of matrices

If p is a polynomial with coefficients in a field F, then we can assign a value to p(x) not
just when x is a member of the field F, but when x is a square matrix with elements in

F. For instance, if p(x) = x2 + 2x− 3 and M is the matrix
[
4 2
0 1

]
, then

p(A) =

[
4 −2
0 3

]2
+ 2

[
4 −2
0 3

]
− 3

[
1 0
0 1

]
=

[
16 −14
0 9

]
+

[
8 −4
0 6

]
−
[
3 0
0 3

]
=

[
24 −18
0 12

]
where we’ve identified the constant term −3 in the polynomial with the matrix −3I .

Let S be the set of of polynomials p ∈ F[x] that satisfy p(A) = 0 for some specified
matrix A ∈ Matn×n(F). It turns out that S satisfies all the properties for being an ideal
of F[x]:

1. Non-emptiness: p(A) = 0 is true if p is the zero polynomial, so S contains the zero
polynomial at the very least.

2. Closure under addition by other elements of the ideal: If p ∈ S and q ∈ S, then (p +
q)(A) = p(A)+q(A) (by definition of polynomial addition) = 0+0 = 0, so p+q ∈ I
as well.

3. Closure under multiplication by arbitrary polynomials: If p ∈ S, then (pq)(A) =
p(A)q(A) = 0q(A) = 0, so pq ∈ I . (Remember that here, the notation pq means
polynomial multiplication, not composition.)

So either S contains only the zero polynomial, or it equals the set of multiples of some
monic polynomial of minimal degree which we’ll call the minimal polynomial of A. It
turns out that S must contain at least one nonzero element. One way to see this: re-
member that Matn×n(F) is a vector space with dimension n2. so for any matrix A, the
n2 + 1 matrices I, A,A2, · · · , An2 have to be linearly dependent, and whatever linear
combination of them gives the zero matrix also specifies a polynomial with degree at
most n2. (As we’ll see in the next section, we can get a much better upper bound on
the degree than n2.)

6.6.2 Minimal polynomials of operators

We can also apply p to linear operators on a vector space over F, not just to matrix
representations. For instance, if T ∈ End(V ) is a linear operator over a real vector
space V and p(x) = x2 + 2x − 3 ∈ R[x], then p(T ) = T 2 + 2T − 3I ; that is, p(T ) sends
v to T (Tv) + 2Tv − 3v. We can define the minimal polynomial of T either as the
minimial polynomial of any matrix representation of T (though we’ll have to prove
that all representations give the same polynomial), or the minimal element of the ideal
{p ∈ F[x] : p(T ) is the zero operator}.
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To prove that these definitions coincide, remember that if a linear operator T has
matrix representations J and M related by the basis translation matrix S (that is, M =
SJS−1), then Mn = (SJS−1)n = SJnS−1, so Jn and Mn represent T n with respect to
the same two bases. Similarly, if some other operator T ′ has matrix representations
J ′,M ′ with M ′ = SJS−1 (where the change of basis matrix S is the same as before),
then M +M ′ = SJS−1 + SJ ′S−1 = S(J + J ′)S−1, so T + T ′ has matrix representations
M and J ′ with respect to the same two bases.

So since changes of basis respect both operator powers and operator sums, the op-
erator p(T ) for any polynomial p can be represented in matrix form either as p(J) or as
p(M) = p(SJS−1) = Sp(J)S−1. The only matrix representation of the map that sends
everything to zero is the zero matrix. So p(T ) is the zero map if and only if p(M) and
p(J) are the zero matrix; and if p(M) is the zero matrix, then p(J) is the zero matrix for
any matrix J similar to M .

It bears reiteration that this theory makes sense only for finite-dimensional vector
spaces: operators on infinite-dimensional spaces may not have a minimal polynomial.
One example is the right-shift operator R(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .) on the space
of infinite sequences FN. If the nonzero polynomial anRn+ · · ·+ a1R+ a0I is applied to
the sequence (1, 0, 0, 0, . . .) with a 1 in the first slot and zeros elsewhere, then it produces
the sequence (a0, a1, . . . , an, 0, 0, 0, . . .). Thus, no nonzero polynomial of R can map
every element of FN to zero, so R does not have a minimal polynomial.

6.6.3 Minimal polynomials and invariant subspace decompositions

In our discussion of characteristic polynomials, we noted that if a space V can be de-
composed as V = U ⊕W where U and V are invariant subspaces of some operator T ,
then the characteristic polynomial T is the product of the characteristic polynomials of
its restrictions to U and W . A natural question is whether a similar finding exists for
minimal polynomials. The answer is that it does, but instead of multiplying minimal
polynomials, we have to compute the least common multiple.

The least common multiple of two polynomials p, q is the monic polynomial r of
smallest degree such that both p and q divide r. In practical terms, we can calculate
the LCM by factoring p and q as far as we can, then taking the largest exponent of
each factor: for instance, if p(x) = a(x)b(x)2 and q(x) = b(x)3c(x) where a, b, c are
polynomials that can’t be factored any further (the more proper term is irreducible),
then the least common multiple is a(x)b(x)3c(x).

Proposition. Suppose V = U ⊕ W where both U and W are invariant subspaces of some
operator T ∈ End(V ), and let mU ,mW be the minimal polynomials of the restricted maps
T |U , T |W . Let p be any other polynomial. Then p(T ) is the zero operator if and only if mU and
mW both divide p.

Proof. First, suppose p is divisible by both mU and mW : that is, we can write p(x) =
qU(x)mU(x) = qW (x)mW (x) where qU , qW are two other polynomials. For any u ∈ U ,
therefore, p(T )u = qU(T )mU(T )u = qU(T )0 = 0, so p(T ) is the zero map on U . By
identical logic, p(T ) is the zero map on W . Since V = U ⊕W , any element v ∈ V can be
written v = u+w, so p(T )v = p(T )u+ p(T )w = 0+0 = 0, so p(T ) is the zero operator.

Conversely, suppose that p(T ) is the zero operator on V . Then in particular, it must
be the zero operator on U and on V separately. The set of polynomials q such that
q(T |U) = 0 ∈ End(U), as we’ve discussed earlier in this section, is an ideal, so it’s the
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set of all multiples of some minimal polynomial that, by definition, is mU . The same
logic goes for W . So both mU and mW must divide p.

Corollary. With the same setup as in the previous proposition, the minimal polynomial of T is
the least common multiple of mU and mW .

And there’s a natural translation into matrix language:

Corollary. If a matrix M has the block diagonal structure
[
A 0
0 B

]
, then the minimal polyno-

mial of M is the LCM of the minimal polynomials of A and B.

6.6.4 Maximum generalized eigenvector order

In section 6.4.3, we proved that the dimension of the subspace containing all general-
ized eigenvectors of some operator T with a fixed eigenvalue λ was the multiplicity
of λ as a root of T ’s characteristic polynomial. You may wonder if T ’s minimal poly-
nomial tells us something else useful about generalized eigenspaces. It turns out that
the answer is yes: it tells you the maximum order of any generalized eigenvector with
eigenvalue λ.

Throughout, V is a finite-dimensional vector space, T is a linear operator on V , λ is
a scalar, and m is the minimal polynomial of T .

Proposition. Suppose that every element of V is a GEV of T with eigenvalue λ, and the
maximum order of these GEVs is h. Then m(x) = (x− λ)h.

Proof. If v ∈ V is a GEV with eigenvalue λ and order ≤ h, then (T − λ)hv = 0. If this
is true for every v ∈ V , then p(x) := (x− λ)h satisfies p(T ) = 0End(V ), so p is a multiple
of m; that is, m(x) = (x− λ)k for some integer k ≤ h. But if v is a GEV of order h, then
(T − λ)k for k < h is a GEV of order h − k, and in particular can’t be 0. So k = h and
m(x) = (x− λ)h.

Theorem. If V is a finite-dimensional vector space and T is an arbitrary operator on V , then
the the largest order of any GEV of T with eigenvalue λ is also the largest exponent k such that
(x− λ)k divides m(x).

Proof. Write h for the maximal order of a GEV with eigenvalue λ. By repeating the logic
from section 6.4.3, we can decompose V into a direct sum of T -invariant subspaces
U ⊕ W , where U = ker(T − λ)h contains all the GEVs with eigenvalue λ, and V =
im(T − λ)h contains no GEVs with eigenvalue λ except 0. If mU ,mW are the minimal
polynomials of the restricted maps T |U , T |W , then m must be the LCM of mU and mW .

We know from the previous proposition that mU(x) = (x − λ)h, so m(x) is guaran-
teed to have a factor of (x− λ)h (but no higher factor of x− λ) if x− λ does not divide
mW (x).

We claim that x − λ does not, in fact, divide mW (x). To prove this, suppose the
contrary: that mW can be factored as mW (x) = (x− λ)p(x) where p is some polynomial
of degree less than that of mW . Then p(T |W ) can’t be the zero operator (if it were, then
p would be the minimal polynomial of T |W or a multiple thereof, not mW ). So there’s
some vector w ∈ W such that p(T |W )w ̸= 0 but mW (T |W ) = (T |W − λ)p(T |W )w = 0.
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But this means that p(T |W )w would be an nonzero eigenvector of T with eigenvalue
λ—a contradiction, as U and W were constructed to put all such eigenvectors in U and
none of them in W .

Therefore, x − λ doesn’t divide mW , so m(x) is divisible by (x − λ)h but no higher
power of x− λ.

Note that this result doesn’t require us to assume that V is a complex vector space,
or that m can be factored completely into monomials. An alternate proof that x − λ
can’t divide mW is a consequence of the Cayley–Hamilton theorem proved in the next
section: if x− λ divided the minimal polynomial of T |W , then it would have to divide
its characteristic polynomial; that is, T |W would need to have λ as an eigenvalue.

6.7 Cayley–Hamilton theorem

It turns out that the minimal polynomial of any n×n matrix (equivalently, operator on
an n-dimensional vector space) has degree at most n; in particular, the characteristic
polynomial will always be a multiple of the minimal polynomial.

Theorem (Cayley–Hamilton theorem). If M is an n× n matrix with complex entries (pos-
sibly all real) and χ is its characteristic polynomial, then χ(M) is the zero matrix.

Proof. Write M = SJS−1 where J is upper triangular. (Note that J may have complex
entries even if M has all real entries.) Then M and J have the same characteristic
polynomial. Furthermore, p(M) = Sp(J)S−1 for any polynomial p, and the only matrix
similar to the zero matrix is itself, so χ(M) is zero if and only if χ(J) is zero as well.

So we just need to prove that χ(J) = 0. Let λ1, . . . , λn be the diagonal entries of
J . Since xI − J is also upper triangular, its determinant—that is, the characteristic
polynomial χ of J—is the product (x− λ1) · · · (x− λn) of the diagonal entries of J . Let
e1, . . . , en ∈ Coln(C) be the standard basis column vectors, and note that Jek equals
λkek plus a linear combination of e1, . . . , ek−1.

So the column space of J − λn (remember that we identify constants such as λn

with multiples λnI of the identity map) is contained in span{e1, . . . , en−1}. Similarly,
the column space of (J − λn−1)(J − λn) is contained in the image of span{e1, . . . , en−1}
under J − λn−1, which itself is contained in span{e1, . . . , en−2}. Continuing likewise,
we get that (J −λ2) · · · (J −λn) sends every column vector to a multiple of e1, which is
an eigenvector of J , so (J − λ1) · · · (J − λn) sends every column vector to 0Coln(C). That
is, χ(J) is the zero matrix.

Even though we’ve used complex numbers in its proof, the Cayley–Hamilton the-
orem establishes a statement about matrices that is equally valid even if the entries in
M are all in a smaller field, such as the real or rational numbers.

Corollary. For any linear operator T : V → V on a vector space whose base field is a subfield
of C (such as Q, R, or C itself), χT (T ) = 0End(V ).

Proof. χT equals χM for any matrix representation M of T , and χM(M) is the zero
matrix and a representation of χT (T ), and the zero matrix can only represent, and is
the only representation of, the zero map.
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Corollary. The characteristic polynomial of any matrix is a multiple of its minimal polynomial.

Proof. The set I of polynomials that satisfy p(A) = 0 for some specified matrix A is an
ideal of F[x], so it equals the set of all multiples of its primitive element. This primitive
element is (by definition) the minimal polynomial, and the characteristic polynomial
is in I by the Cayley–Hamilton theorem.

Remark. These results are true even for more exotic fields not contained in C. The key
result from abstract algebra is that given any field F, we can construct an algebraically
complete field (that is, a field in which every polynomial has a root, like C) that contains
F as a subfield. But the existence of algebraically complete field extensions would
require a detour into abstract algebra, so we won’t talk about it more here.

6.8 Jordan normal form

6.8.1 Existence and essential uniqueness

We’ve now laid the groundwork for the main result of this chapter: every matrix is
similar to exactly one matrix with a specified block diagonal form made out of Jordan
blocks. A Jordan block is an upper triangular matrix with identical entries λ on the
diagonal, entries of 1 on every entry above a diagonal entry (called the superdiagonal),
and zeros elsewhere. Jordan blocks of size 1 through 5, for example, have the forms

[
λ
] [λ 1

0 λ

] λ 1 0
0 λ 1
0 0 λ



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ



λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ



The Jordan block of size n and eigenvalue λ has characteristic and minimal polynomial
(x − λ)n. The characteristic polynomial is easy to compute from the general result on
determinants of triangular matrices. To find the minimal polynomial, note that if M
is a Jordan block with diagonal entry λ, then (M − λI) is a matrix with 1s on the
superdiagonal and 0s everywhere else, and every power of this matrix moves the 1s
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another step up and to the right. For instance, for a 4× 4 block:
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


2

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


3

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


4

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



If an operator T : V → V has a matrix representation as a single Jordan block
with diagonal entries λ relative to the basis {v1, . . . ,vn}, then all of V is a generalized
eigenspace with order n and eigenvalue λ, and repeated application of the operator
T − λI produces the chain vn 7→ vn−1 7→ · · · 7→ v1 7→ 0.

A matrix in Jordan normal form (JNF) is a block diagonal matrix in which every block
is a Jordan block. We can formulate the main theorem on JNF in two ways:

1. In operator language: let V be a finite-dimensional complex vector space and T be a
linear operator on V . Then V has a basis {v1, . . . ,vn} consisting entirely of GEVs
of T with eigenvalues λ1, . . . , λn organized into chains: that is, (T − λ1)v1 = 0,
and for all integers i ≥ 2, either (T −λi)vi = 0, or (T −λi)vi = vi−1 and λi−1 = λi.
We’ll call this a Jordan basis of V .

Furthermore, the lengths and eigenvalues of the chains are determined by T : any
two bases must have the same number of chains of length ℓ and eigenvalue λ for
any positive integer λ and scalar λ.

2. In matrix language: Every matrix M with complex entries is similar to a matrix in
Jordan normal form. Furthermore, if M is similar to multiple matrices in Jordan
normal form, then these matrices can be turned into each other by rearranging
the Jordan blocks along the diagonal without changing their sizes.

Why are these formulations equivalent? If {v1, . . . ,vn} is a Jordan basis, then col-
umn i of the matrix representation of T with respect to this basis either has a diagonal
entry of λk and zeros elsewhere (if (T − λ)vk = 0), or it has an entry of λk on the
diagonal, an entry of 1 just above the diagonal in row k − 1, and zeros elsewhere (if
(T − λ)vk = vk−1). This means that every chain (T − λ)vj = vj−1, (T − λ)vj−1 =
vj−2, . . . , (T − λ)vi = 0 creates a Jordan block in the matrix representation with eigen-
value λ, extending from row and column i to row and column j.

If the chain lengths and eigenvalues in any Jordan basis are uniquely determined,
therefore, then the block sizes and eigenvalues in the matrix representation must also
be uniquely determined. Rearranging Jordan blocks in the matrix representation, mean-
while, corresponds to rearranging a Jordan basis while keeping chains together.
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Theorem. A Jordan basis for any finite-dimensional complex vector space V with respect to an
arbitrary operator T ∈ End(V ), as spelled out above, exists, and the eigenvalues and lengths of
its chains are uniquely determined by T .

Proof. We’ve essentially already proved this! It just requires putting together three
building blocks from previous sections.

First, some notation: let n be the dimension of V , let λ1, . . . , λk be the (distinct)
eigenvalues of T , and let Wi be be the subspace of V consisting of all the generalized
eigenvectors of T , of any order, with eigenvalue λ. (We’ll call this the “maximal” GES
with eigenvalue λ.) Remember that Wi is an invariant subspace of T , so any results
on general operators and spaces also apply to the restricted map T |Wi

. Let χ be the
characteristic polynomial of T . Since V is a complex vector space and C is algebraically
complete, χ must factor completely as χ(x) = (x−λ1)

a1 · · · (x−λk)
ak , with a1+· · ·+ak =

n.
The conclusion follows from the following easy inferences:

1. The sum W1 + · · · + Wk is a sum of GESes with all distinct eigenvalues, so it is
direct (page 100), and dim(W1 ⊕ · · · ⊕Wk) = dimW1 + · · ·+ dimWk.

2. The dimension dimWi of any of the maximal GESes is ai, the exponent of x − λi

in χ(x) (page 198). Therefore, dimW1 + · · ·+dimWk = a1 + · · ·+ ak = n = dimV ,
so V = W1⊕· · ·⊕Wk. That is, V can be completely decomposed into its maximal
GESes.

3. Each of the spaces Wi has a Jordan basis relative to the restricted operator T |Wi
,

with uniquely determined chain lengths. This was the main finding of Section
3.8, page 101.

Taking the union of the Jordan bases for each Wi gives a Jordan basis for V .

6.8.2 Characteristic and minimal polynomials

From the Jordan normal form of a matrix or operator, it’s possible to discern, at a
glance, all that operator’s eigenvalues, as well as the sizes of the associated (gener-
alized) eigenspaces: every Jordan block with size k and diagonal entry λ adds 1 to the
dimension of the subspace of eigenvectors with eigenvalue λ, adds 2 to the dimension
of the subspace of GEVs with order at most 2, and so on up to k.

It’s also possible to find the characteristic and minimal polynomials at a glance by
putting together three observations that we’ve already made:

1. The Jordan block with size k and diagonal λ has minimal polynomial and char-
acteristic (x− λ)k (page 206).

2. The characteristic polynomial of a block diagonal matrix is the product of the
characteristic polynomials of the blocks (page 199).

3. The minimal polynomial of a block diagonal matrix is the least common multiple
of the minimal polynomials of the blocks (page 204).
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These three points together mean that if T is an operator on a finite-dimensional
complex vector space and has distinct eigenvalues λ1, . . . , λk, then:

1. The characteristic polynomial of T is χT (x) = (x− λ1)
a1 · · · (x− λk)

ak , where ai is
the sum of block sizes with diagonal entry λi (or equivalently, the count of diagonal
entries λi)

2. The minimal polynomial of T is mT (x) = (x − λ1)
b1 · · · (x − λk)

bk , where bi is the
size of the largest block with diagonal entry λi.

This result gives an alternate proof of the Cayley–Hamilton theorem: obviously the
size of the largest block with a certain eigenvalue must be less than the total sum of all
the blocks.

The process for actually computing a Jordan basis is a bit complicated, and we
won’t go into it too much here. Computing a (not necessarily Jordan) basis of a gen-
eralized eigenspace is easy, though—just use the typical RREF method to compute
ker(M − λi)

h—and you may enjoy thinking about how the proof of existence of Jordan
bases in Section 3.8 could be adapted into a practical algorithm.

6.9 Real matrices and conjugate eigenspaces

In most of this chapter, we’ve been dealing with complex matrices, and some results for
complex matrices don’t generalize in the obvious way to real matrices because poly-
nomials with real coefficients don’t necessarily have real roots. For instance, any real
matrix M is conjugate to a matrix in Jordan normal form with complex coefficients by
means of a change-of-basis matrix with complex entries. But the only real matrices
M whose Jordan normal forms are real are the ones whose characteristic polynomials
have all real roots.

The existence of Jordan normal form, though, does give us a way to determine if
two matrices are similar in R. If A and B are real matrices that both have complex
Jordan normal form J , then since matrix similarity is a transitive relation, A and B are
similar to each other as elements of Matn×n(C); that is, there is some complex invertible
matrix S such that A = SBS−1. One natural question: are A and B also similar as
elements of Matn×n(R)—that is, can we choose S to have all real entries? The answer
turns out to be yes.

Proposition. Suppose A and B are n× n matrices with real entries, and suppose there’s some
invertible matrix S ∈ Matn×n(C) such that A = SBS−1. Then there’s also a matrix S ′ with
all real entries such that A = S ′BS ′−1.

Proof. Note first that if S is invertible, then the equations A = SBS−1 and AS = SB
are equivalent by right-multiplying both sides by S or S−1.

Separate the real and imaginary parts of S into two matrices: S = Sr + iSi where
Sr, Si are both real. If A = SBS−1 (that is, AS = SB), then ASr + iASi = SrB + iSiB.
As ASr and SrB are real and iASi and iSiB are purely imaginary, so ASr = SrB and
ASi = SiB. So any linear combination S ′ := Sr + cSi also satisfies AS ′ = S ′B, so if S ′ is
invertible and c is real, then S ′ is a real change-of-basis matrix from A to B.

Consider the function p(x) = det(Sr + xSi). This function is a polynomial with
degree at most n and real coefficients (because every entry in Sr + xSi has the form
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ax + b, and each term in the determinant is the product of n entries). Furthermore, p
can’t be the zero polynomial, because p(i) = detS ̸= 0. So p has only a finite number of
roots, and in particular, there’s sone real number c such that Sr + cSi is invertible and
gives a change-of-basis matrix from A to B.

Another question: how close can we get to Jordan normal form while staying in
the real numbers? The answer turns out to be: pretty close. The complex generalized
eigenspaces for complex conjugate eigenvectors turn out to have identical chain struc-
tures, and we can merge these eigenspaces together into a real almost-but-not-quite
generalized eigenspace that gives the operator an almost-but-not-quite triangular ma-
trix representation.

The starting point is this basic result in the theory of polynomials:

Proposition. The non-real roots of any polynomial p with real coefficients occur in conjugate
pairs. That is, if z is a root of p with multiplicity k, then z̄ is also a root with multiplicity k.

Proof. Remember that complex conjugation respects addition and multiplication: that
is, z + w = z̄ + w̄ and zw = z̄w̄. Therefore, if p(z) = cnz

n + · · · + c1z + c0 and the
coefficients cn are all real (that is, they equal their own complex conjugates), then p(z)
and p(z̄) = cnz̄

n + · · ·+ c1z̄ + c0 are complex conjugates. In particular, if p(z) = 0, then
p(z) = 0.

To see that z0 and z̄0 have the same multiplicity, note that (z−z0)(z− z̄0) = z2−(z0+
z̄0)z + z0z̄0 is a polynomial with real coefficients. If z0 has multiplicity k as a root of p,

but z̄0 has multiplicity greater than k, then
p(z)

(z − z0)k(z − z̄0)k
is also a polynomial with

real coefficients (because the quotient of polynomials with real coefficients must have
real coefficients itself) that has z̄0 but not z0 as a root, a contradiction of what we just
proved. (Similar logic shows that z̄0 can’t have multiplicity less than that of z0, either.)

Corollary. The non-real eigenvalues of any real matrix (or operator on a finite-dimensional real
vector space) occur in conjugate pairs: that is, if λ is an eigenvalue, then so is λ̄. Furthermore,
the dimensions of the maximal generalized eigenspaces of λ and λ̄ (that is, the exponents of x−λ
and x− λ̄ in the characteristic polynomial), and the maximal order of generalized eigenvectors
with eigenvalue λ and λ̄ (that is, the exponents of x− λ and x− λ̄ in the minimal polynomial),
are equal.

We can even say more than this: not only does every non-real eigenvalue of a real
matrix occur in complex conjugate pairs, but the corresponding generalized eigenvec-
tors also occur in conjugate pairs.

Proposition. Let T : Cn → Cn be a linear transformation whose matrix representation rela-
tive to the standard basis has all real entries. For every v = (a1, . . . , an) ∈ Cn, write v̄ for the
vector (ā1, . . . , ān) whose components are the complex conjugates of corresponding components
of v. Suppose that λ is a non-real eigenvalue of T , and let B = {v1, . . . ,vk} be a basis for the
maximal generalized eigenspace with eigenvalue λ that consists of a set of Jordan chains: that
is, (T − λ)v1 = 0 and (T − λ)vi is either 0 or vi−1 for 2 ≤ i ≤ k. Then B̄ := {v̄1, . . . , v̄k}
is a basis for the maximal generalized eigenspace with eigenvalue λ, and B̄ has the same chain
structure with respect to T − λ̄ that B has with respect to T − λ.
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Proof. Remember that every component in Tv is the sum of products of entries in v
with entries in the matrix representation of T with respect to the standard basis. If all
of these matrix entries are real, then Tv and T v̄ are complex conjugates (because if x is
real then xz and xz̄ are complex conjugates), so (T −λ)v and (T −λ)v are also complex
conjugates, so the conclusion follows.

We can use this result to get a sort of “real JNF” that recasts corresponding complex
Jordan blocks for λ and λ into a single Jordan block. How can we do this? Suppose that
W ⊂ Cn is a maximal primitive generalized eigenspace of eigenvalue λ: that is, its basis
{v1, . . . ,vk} is a single Jordan chain vk 7→ · · · 7→ v1 7→ 0 with respect to T − λ. Denote
by W̄ the space of complex conjugates of every element in W ; this (by the proposition
that we just proved) is also a maximal generalized eigenspace of T with eigenvalue λ̄.

Now, let the symbols ℜ and ℑ denote the real and imaginary parts of a complex
number, and remember the general formulas z + z̄ = 2ℜ(z) and z − z = 2iℑ(z). By
analogy, define the vectors ui =

1
2
(vi + v̄i) and wi =

1
2i
(vi − v̄i) for 1 ≤ i ≤ k: these are

the real and imaginary parts of vi. The vectors ui and wi must have real coefficients,
and span{ui,wi} = span{vi, v̄i} for all integers 1 ≤ i ≤ k. To see that {ui,wi} does

in fact span all of span{vi, v̄i}, note that the matrix S =

[
1/2 −i/2
1/2 i/2

]
, which translates

column-vector representations relative to the {ui,wi} basis to representations relative

to the {vi, v̄i} basis, has nonzero determinant i/2. The inverse of S is S−1 =

[
1 1
i −i

]
,

which gives the formulas vi = ui + iwi and v̄i = ui − iwi.
So {u1,w1,u2,w2, . . . ,uk,wk} is a basis for W ⊕ W̄ . To figure out the matrix repre-

sentation of T |W⊕W̄ relative to this basis, we need to compute Tui and Twi for every
integer 1 ≤ i ≤ k. First, let’s compute Tu1 and Tw1:

Tu1 =
1

2
T (v1 + v̄1)

=
1

2
(λv1 + λ̄v̄1)

=
1

2
(λ(u1 + iw1) + λ̄(u1 − iw1))

=
λ+ λ̄

2
u1 +

i(λ− λ̄)

2
w1

= ℜ(λ)u1 −ℑ(λ)w1

Similarly,

Tw1 =
1

2i
T (v1 − v̄1)

=
1

2i
(λv1 − λ̄v̄1)

=
1

2i
(λ(u1 + iw1)− λ̄(u1 + iw1))

=
1

2i
((λ− λ̄)u1 + i(λ+ λ̄)w1)

= ℑ(λ)u1 + ℜ(λ)wi.
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For the vectors ui,wi with i ≥ 2, we can compute

Tui =
1

2
T (vi + v̄i)

=
1

2
(vi−1 + v̄i−1 + λvi + λ̄v̄i)

= vi−1 + ℜ(λ)ui −ℑ(λ)wi

Twi =
1

2i
T (vi − v̄i)

=
1

2i
(vi−1 − v̄i−1 + λvi − λ̄v̄i)

= wi−1 + ℑ(λ)ui + ℜ(λ)wi.

So with respect to the basis {u1,w1, . . . ,uk,wk}, T |W⊕W̄ has the following almost-but-
not-quite-triangular form. Define r = ℜ(λ) and c = ℑ(λ) for clarity:

r c 1 0 0 0 · · · 0 0
−c r 0 1 0 0 · · · 0 0
0 0 r c 1 0 · · · 0 0
0 0 −c r 0 1 · · · 0 0
...

...
...

...
...

... . . . ...
...

0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 · · · 0 1
0 0 0 0 0 0 · · · r c
0 0 0 0 0 0 · · · −c r


Note the relationship to Jordan form: we’ve replaced every occurrence of λ in the Jor-

dan block for W with the 2 × 2 block
[
r c
−c r

]
and every occurrence of 1 with

[
1 0
0 1

]
.

The matrix with the same block form but with
[
r −c
c r

]
as a block instead of

[
r c
−c r

]
would also be valid; this corresponds to designating λ̄ as the “original” eigenvalue and
λ as the conjugate instead of vice versa. And we can assemble a “real JNF” for the en-
tire transformation on T by lining up blocks of this form on the diagonal for non-real
eigenvalues and using ordinary Jordan blocks for real eigenvalues.



Chapter 7

Inner products and vector space
geometry

Most of this chapter looks at vector spaces that have an extra structure called an inner
product, which gives a notion of how large and close together vectors are. The theory of
inner products in R2 and R3, in particular, is essential for using linear algebra to model
real-world geometry and physics. These notions will get clearer as we go on.

First, a few matrix definitions:

1. The transpose of an r × c matrix M is the c × r matrix produced by reflecting
M across the diagonal. Row number i of M is column number i of MT , and

vice versa. For instance, if M =

[
1 2 3
4 5 6

]
, then MT =

1 4
2 5
3 6

. (We’ve seen

transposed matrices a few times before, most extensively with the adjugate and
cofactor matrices in section 5.7, but now we’ll start talking about the properties
of matrix transposes in general.)

2. An n × n matrix is symmetric if it equals its transpose (that is, entry (i, j) equals
entry (j, i) for all integers 1 ≤ i, j ≤ n) and antisymmetric if it equals the negative
of its transpose. Diagonal entries on an antisymmetric matrix must all be zero.

3. The Hermitian conjugate or conjugate transpose of M , which we’ll denote MH (some
books use the notation M † or M∗), is the matrix created from M by transposing
it and then taking the complex conjugate of all of its entries. For instance, if

M =

[
i 4

1− 2i 2 + 5i

]
, then MH =

[
−i 1 + 2i
4 2− 5i

]
.

4. An n × n matrix is Hermitian if it equals its own conjugate transpose, and anti-
Hermitian if it equals the negative of its own conjugate transpose.

If you break a complex matrix M into its real and imaginary parts M = A + iB
where A and B are real, then M is Hermitian if and only if A is symmetric and B
is antisymmetric, and M is anti-Hermitian if and only if A is antisymmetric and
B is symmetric. So real symmetric and antisymmetric matrices are automatically
(respectively) Hermitian and anti-Hermitian; furthermore, the diagonal entries of
a Hermitian matrix are real, and the diagonal entries of an anti-Hermitian matrix
are purely imaginary. (Remember that zero counts as purely imaginary.)

213
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And one important property of the transpose of matrix products: (AB)T = BTAT

and, similarly, (AB)H = BHAH . (Note that entry (i, j) of (AB)T and of BTAT is pro-
duced from row j of A and column i of B.)

7.1 Bilinear and sesquilinear forms

Let V be a vector space over a field F. A bilinear form on V is a function B : V 2 → F that
takes ordered pairs of vectors in V and returns a value in the base field, such that if you
hold either argument of B constant, the map from V to F that you get from varying the
other argument is linear. That is:

1. For any three vectors v1,v2,w ∈ V and constants c1, c2 ∈ F, B(c1v1 + c2v2,w) =
c1B(v1,w) + c2B(v2,w). (That is, the map v 7→ B(v,w) is linear for any constant
vector w.)

2. For any three vectors v,w1,w2 ∈ V and constants c1, c2 ∈ F, B(v, c1w1 + c2w2) =
c1B(v,w1) + c2B(v,w2). (That is, w 7→ B(v,w) is linear for any constant vector
v.)

One immediate consequence is that B(v,w) = 0 if (but not only if) either v or w
equals 0. And as with linear maps with one argument, these axioms imply their own
generalizations to sums of three or more vectors: that is,

B(a1v1 + · · ·+ amvm, b1w1 + · · ·+ bnwm) =
m∑
i=1

n∑
j=1

aibjB(vi,wj).

So B is completely determined by its values on every ordered pair of elements from a
basis of V .

7.2 Matrix representations of bilinear forms

7.2.1 Definitions

Like linear maps, bilinear forms B : V 2 → F have matrix representations if V is finite-
dimensional. But to use the matrix representation, you have to multiply it represen-
tation by two vector representations: a row vector to represent the first input, and a
column vector to represent the second.

Suppose that {v1, . . . ,vn} is a basis of V , and write bij = B(vi,vj). Then the matrix
representation of B (sometimes called the Gram matrix) is

b11 b12 · · · b1n
b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn


To use this matrix to compute the value of a bilinear product on two vectors B(u,w),
first find the coefficients u = c1v1+· · ·+cnvn and w = d1v1+· · ·+dnvn of the arguments
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to B, then represent u as a row vector and w as a column vector. The matrix product

[
c1 c2 · · · cn

]

b11 b12 · · · b1n
b21 b22 · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn



d1
d2
...
dn


is a 1× 1 matrix whose sole entry is the value of B(u,w). (We won’t be pedantic about
differentiating the space Mat1×1(F) of 1× 1 matrices from the underlying field F.) You
may want to prove for yourself that if u = vi and w = vj (that is, the row and column
vectors have one entry of 1 and all other entries 0), then the matrix product is bij .

We can ask the same questions about matrix representations of bilinear forms as
about matrix representations of linear maps. We’ll look at two core questions:

1. If we have a representation relative to one basis, how can we find a representation
relative to another basis?

2. Can we define a set of canonical matrices with simple structures, analogous to
matrices in Jordan normal form for linear operators, such that every bilinear form
is equivalent to exactly one of those canonical matrices?

3. In particular, can we find such a set of canonical matrices if we also put some
restrictions on the bases that we’re allowed to use?

Finding a fully general set of canonical matrices is very difficult, but for the most
useful subset of bilinear forms, these canonical matrices do exist. For example, for
symmetric bilinear forms on Rn—that is, for those that satisfy B(v,w) = B(w,v)—a
result called Sylvester’s law of inertia proves that there is exactly one representation of
B as a diagonal matrix whose diagonal entries are a string of entries of 1, followed by
a string of entries of 0, followed by a string of entries of −1.

7.2.2 Matrix congruence and changes of basis

To answer our second and third questions, we’ll first have to look at the first one: how
to change the basis for a matrix representation of a bilinear form. Suppose that we have
a matrix M that represents a bilinear form B relative to the basis {v1, . . . ,vn}. That is,
if two vectors u1,u2 ∈ M are represented relative to this basis by the column vectors
a,b ∈ Coln(F), then B(u1,u2) = aTMb.

Suppose we want to find the matrix representation M ′ of B relative to some other
basis {w1, . . . ,wn}—that is, if a′,b′ are the column vector representations of u1,u2 rel-
ative to the basis {w1, . . . ,wn}, then a′TM ′b′ = aTMb. We know, of course, how to
translate between column vector representations: if S is the matrix whose column i
represents vi relative to {w1, . . . ,wn}, then S translates column-vector representations
relative to {v1, . . . ,vn} to column-vector representations relative to {w1, . . . ,wn}. That
is, bSb′ and a = Sa′, so aT = a′TST (remember the formula (M1M2)

T = MT
2 M

T
1 for

generic matrices M1,M2). Substituting these expressions into a′TM ′b′ = aTMb gives
a′TM ′b′ = a′TSTMSb, which has to be true for every possible pair of column vectors
a′,b′—in particular, it must be true if a′ and b′ are both standard basis vectors, in which
case the products a′TM ′b′ and a′TSTMSb simply extract one entry from the matrices
M ′ and STMS. So M ′ = STMS.



216 CHAPTER 7. INNER PRODUCTS AND VECTOR SPACE GEOMETRY

We call two n×n matrices M ′,M congruent—that is, they represent the same bilinear
form relative to possibly different bases—if there is some invertible matrix S such that
M ′ = STMS. Note the resemblance to the concept of similarity: M and M ′ represent the
same linear operator if there’s some matrix S such that M ′ = S−1MS. The definition
of similarity used both S and S−1 because they express a two-way conversion from
one basis to another and then back: S translates from the basis for M ′ into the basis
for M , and then S−1 translates back into the basis for M ′. In the product M ′ = STMS,
however, both ST and S translate vector representations in the same direction, for M to
the basis for M ′: but left-multiplication by S translates column vector representations,
and right-multiplication by ST translates row vector representations.

It’s easy to prove that congruence, like similarity, satisfies the three axioms of an
equivalence relation:

1. Reflexivity: We have M = STMS if S = I , so M is congruent to itself.

2. Commutativity: Suppose that M is congruent to M ′: that is, M ′ = STMS for
some matrix S. Then (ST )−1MS−1 = S, and it’s easy to prove that (ST )−1 =
(S−1)T (because I = SS−1, so I = IT = (SS−1)T = (S−1)TST ), so (S−1)T and ST

are inverses). So S−1 gives a change of basis from M ′ to M , and M ′ is congruent
to M .

3. Transitivity: If M2 = ST
1 MS1 and M3 = ST

2 M2S2, then M3 = ST
2 (S

T
1 M1S1)S2 =

(S1S2)
TM(S1S2), so S1S2 gives a change-of-basis matrix from M1 to M3.

In general, matrices can be similar without being congruent, or congruent without
being similar. An example of each possibility:

1. Every matrix M is congruent to its scalar multiple 4M (because choosing S = 2I
gives 4M = STMS), but M and 4M are not in general similar. For instance, if
M has nonzero determinant, then M and 4M have different determinants and so
can’t be similar.

2. Two similar but noncongruent real matrices are A =

[
1 0
0 0

]
and B =

[
1 1
0 0

]
.

These matrices both have characteristic and minimal polynomial x(x − 1) and
so must have the same JNF; in fact, A is the JNF of B.1 But if A and B were
congruent, there would have to be a, b, c, d ∈ R such that[

a c
b d

] [
1 0
0 0

] [
a b
c d

]
=

[
1 1
0 0

]

The product on the left is
[
a2 ab
ab b2

]
, which obviously can’t equal

[
1 1
0 0

]
, as we

can’t have both ab = 1 and ab = 0.

For symmetric matrices, which represent the most important class of bilinear forms
on real vector spaces, it turns out that similarity does in fact imply congruence, but this
result is not obvious and will take some effort to prove.

1The explicit change of basis is B = SAS−1 where S = S−1 =

[
1 1
0 −1

]
.
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We’ll mostly discuss bilinear forms in the context of vector spaces over R: the theory
of bilinear forms for vector spaces over C turns out not to be practically useful. Vector
spaces over C do have a closely related, and much more useful, concept of sesquilinear
forms, which we’ll discuss a bit later.

7.3 Dot products, orthogonality, and geometry of Rn

The simplest bilinear form on Rn is the form whose Gram matrix (relative to the stan-
dard basis) is the identity matrix: that is, the dot product defined as

u · v = u1v1 + · · ·+ unvn

where u = (u1, . . . , un) and v = (v1, . . . , vn).
The dot product satisfies a property called positive definiteness: the product v · v =√
v21 + · · ·+ v2n of a vector with itself is a positive real number, and it’s zero if and only

if v itself is zero. We’ll denote the square root of v ·v as ||v|| and call this the norm of v;
the norm of a vector is essentially a measure of its size or length.

The norm satisfies these three important properties:

1. It respects scalar multiplication in absolute value: ||ku|| = |k| ||u|| for any k ∈ R.
Proof: ||ku|| =

√
(ku) · (ku) =

√
k2||u||2 = |k| ||u||.

2. It satisfies the Cauchy–Schwartz inequality: |u · v| ≤ ||u|| ||v|| for all vectors u and
v, with equality if and only if u and v are scalar multiples of each other. Proof:
note (or remember from high school algebra) the following facts:

• The quadratic polynomial ax2+bx+c has zero, one or two real roots accord-
ing as its discriminant b2 − 4ac is negative, zero, or positive.

• ||u+ xv||2 ≥ 0 for all real numbers x, because the square of any real number
can’t be negative.

• The norm is positive definite, so ||u+xv||2 must be strictly greater than zero
unless u + x0v = 0 for some x0; that is, if u is a multiple of v. In this case,
||u+ x0v||2 = 0, and ||u+ xv||2 > 0 for x ̸= x0.

We can expand ||u + xv||2 = (u + xv) · (u + xv) = ||v||2x2 + 2(u · v)x + ||u||2,
which is a quadratic polynomial in x with discriminant 4(u · v)2 − 4||u|| ||v||. So
if u and v are not scalar multiples of each other, this quadratic polynomial has no
real roots, so its discriminant is negative: that is, (u · v)2 ≤ ||u|| ||v||. If u = −x0v,
then this polynomial has exactly one real root at x = x0, so its discriminant is
zero.

3. It satisfies the triangle inequality ||u+v|| ≤ ||u||+ ||v||. Proof: ||u+v||2 = (u+v) ·
(u + v) = ||u||2 + ||v||2 + 2(u · v) and (||u|| + ||v||)2 = ||u||2 + ||v||2 + 2||u|| ||v||,
and u · v ≤ ||u|| ||v|| by Cauchy–Schwartz.

In high school algebra or physics, you may have learned, but may not have seen a
proof, that the dot product is a measure of the angle between two vectors: if u,v are
two vectors and θ is the angle between them, then u ·v = ||u|| ||v|| cos θ. This fact is not
obvious from the definition of dot product; it would be good to prove it.
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To prove it, we’ll first need some results about a general class of operators on Rn

called orthogonal operators. An operator T ∈ End(Rn) is defined as orthogonal if it
preserves the dot product: that is, if (Tu) · (Tv) = u ·v for all pairs of vectors u,v ∈ Rn.

Proposition. Orthogonal operators are bijective.

Proof. If T is not bijective, then (Tu) · (Tu) = 0 but u · u > 0 for any nonzero vector
u ∈ kerT , so T is not orthogonal.

Proposition. If T is orthogonal, then so is T−1.

Proof. Take arbitrary vectors u,v ∈ V . Then since T is orthogonal, so T (T−1u)·T (T−1v) =
T−1u · T−1v. But since T ◦ T−1 is the identity, so T (T−1u) · T (T−1v) = u · v. So
T−1u · T−1v = u · v, so T−1 is orthogonal.

Lemma. Suppose that T is a linear operator that preserves dot products of the standard basis
vectors: that is, (Tei) · (Tej) is 0 if i ̸= j and 1 if i = j. Then the matrix representation M of
T with respect to the standard basis is the inverse of its own transpose (that is, MT = M−1),
and T is an orthogonal operator (that is, it preserves dot products of all vectors, not just the
standard basis).

Proof. If a,b ∈ Coln(R) are column vector representations of arbitrary vectors u,v ∈ Rn

with respect to the standard basis, then u · v = aTb and (Tu) · (Tv) = (Ma)T (Mb) =
aTMTMb. By hypothesis, the equation aTb = aTMTMv must hold when a and b are
the standard basis vectors i and j, in which case aTb is 1 if i = j and 0 if i ̸= j, and
aTMTMb is the entry at position (i, j) of MTM . So MTM is the identity matrix I (that
is, MT = M−1), and (Tu) · (Tv) = (Ma)TMb = aTb = u · v, so T is an orthogonal
operator.

We’ll call a matrix M orthogonal if it represents an orthogonal operator with respect
to the standard basis. We have a way to characterize orthogonal matrices purely in
terms of their entries. Remember that the columns of M are representations of the
images Te1, . . . , Ten of the standard basis vectors, and we just showed that T is or-
thogonal if and only if thse vectors Te1, . . . , Ten all have norm 1 and dot products 0
with each other. Thus, M is an orthogonal matrix if and only if its columns all have
norm 1 and the dot product of any column with any other is zero. (We’re extending
the dot product from Rn to column vectors Coln(R) in the obvious way: just identifyx1

...
xn

 ∈ Coln(R) with (x1, . . . , xn) ∈ Rn.)

Finally, some more vocabulary: a set of vectors in Rn (or similar spaces such as
Coln(R)) is orthogonal if the dot product of any two distinct vectors is zero. The set is
orthonormal if it’s orthogonal and every element also has norm 1. There’s some unfor-
tunate terminological skew here: a matrix is orthogonal if its columns are orthonormal.
Matrices with merely orthogonal columns don’t have a special name, and don’t have
special properties. For instance, if M is a matrix with orthogonal but not orthonor-
mal columns, then not only does MT not generally equal M−1, but M and MT don’t
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necessarily even commute. For one example, consider M =

[
2 1
2 −1

]
; in this case,

MMT =

[
5 3
3 5

]
and MTM =

[
8 0
0 2

]
.

One more simple but important result:

Corollary. The columns of a matrix M are orthonormal if and only if its rows are.

Proof. If M ’s columns are orthonormal, then M represents an orthogonal operator, so
MT = M−1 represents the inverse operator, which must also be orthogonal, and the
columns of MT are the rows of M .

Conversely, if M ’s rows are orthonormal, then MT ’s columns are orthonormal, so
MT represents an orthogonal operator and (MT )T = M represents the inverse operator,
so M ’s columns are orthonormal.

One vital subclass of orthogonal operators is the set of what we’ll call primitive rota-
tions (this is not a standard term). These are the generalizations of the linear operator
T : R2 → R2 that rotates the Cartesian plane by an angle θ counterclockwise around the
origin, sending (1, 0) to (cos θ, sin θ) and (0, 1) to (− sin θ, cos θ) (relative to the standard

basis, T has matrix representation
[
cos θ − sin θ
sin θ cos θ

]
).

The higher-dimensional analogues, which we’ll denote Rij(θ) for some implicit di-
mension n, rotates the plane spanned by ei and ej while leaving other dimensions
fixed. The matrix representations of these operators have entries of 1 along the diag-
onal except at positions (i, i) and (j, j), where they have entry cos θ; they further have
− sin θ at position (i, j) and sin θ at position (j, i).

For n = 5, for example, the operator R24(θ) has form
1 0 0 0 0
0 cos θ 0 − sin θ 0
0 0 1 0 0
0 sin θ 0 cos θ 0
0 0 0 0 1


You should be able to convince yourself by taking dot products of the columns of

this matrix (which, recall, represent the images R24(θ)e1, . . . , R24(θ)en of the standard
basis vectors) that R24(θ) is an orthonormal operator, and so are all the primitive rota-
tion operators. I’ll also ask you to accept that rotation operators also preserve the angle
between any two vectors.2 Now to the main result:

Theorem. If u,v ∈ Rn are nonzero vectors separated by an angle θ, then u·v = ||u|| ||v|| cos θ.

Proof. If we replace u and v by any nonzero scalar multiples au, bv, then the truth of
the equation u · v = ||u|| ||v|| cos θ doesn’t change, because (au) · (bv) = ab(u · v) and
||au|| ||bv|| cos θ = ab||u|| ||v|| cos θ. So it’s enough to prove that if ||u|| = ||v|| = 1, then
u · v = cos θ. (We call vectors with norm 1 unit vectors.)

We’ll prove this case, in which u and v are unit vectors, in three steps:

2It turns out that every orthonormal operator can be decomposed as a product of primitive rotation
operators times, optionally, the reflection operator T (a1, a2, a3, . . . , an) = (−a1, a2, a3, . . . , an), but this
result would take a bit of effort and we won’t really need it.
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1. Prove the special case n = 2,u = e1, ||v|| = 1.

2. Prove the case n = 2 and ||u|| = ||v|| = 1. We’ll do this by finding a primitive
rotation operator R : R2 → R2 such that Ru = e1. As R preserves both dot
products and angles, we can thus reduce this case to that of step 1.

3. Prove the general case ||u|| = ||v|| = 1 for dimension n ≥ 3. We’ll do this induc-
tively by finding a product Q of primitive rotation operators such that the last
components of Qu and Qv are zero: that is, Qu and Qv are in span{e1, . . . , en−1}.
This reduces the case for dimension n to the case for dimension n− 1 and induc-
tively establishes the result for all dimensions ≥ 2.

Step 1. Suppose u = e1. Since ||v|| = 1, there has to be some ϕ in the interval 0 ≤
π < 2π such that v = (cosϕ, sinϕ), so u · v = cosϕ. The angle θ from u to v is either ϕ
counterclockwise (if 0 ≤ ϕ ≤ π) or θ := 2π − ϕ clockwise (if π < ϕ < 2π), and ϕ and θ
have the same cosine, so cos θ = cosϕ = u · v.

Step 2. Choose ϕ such that u = (cosϕ, sinϕ), and choose R = R12(−ϕ).

Step 3. Our operator Q will be the composition Q3Q2Q1 of three primitive rotation
operators:

1. Let u1 and un be the first and last components of u. If un = 0, then let Q1 be
the identity. Otherwise, define k1 =

√
u2
1 + u2

n and choose ϕ1 such that (u1, un) =
(k1 cosϕ1, k1 sinϕ1), and let Q1 = R1n(−ϕ1).

2. Note that Q1u has all the same components as u except possibly the first (which
is k1 instead of k1 cosϕ1) and the last (which is 0 instead of sinϕ1). Let un−1 be
the second-to-last component of u, let k2 =

√
k2
1 + u2

n−1, and let ϕ2 be such that
(k1, un−1) = (k2 cosϕ2, k2 sinϕ2), and define Q2 = R1,n−1(−ϕ2). (If k2 = 0, then ϕ2

is arbitrary.)

3. Define w = Q2Q1v and let wn−1, wn be the last two components of w. Define
k3 =

√
w2

n−1 + w2
n. and define ϕ3 such that (wn−1, wn) = (k3 cosϕ3, k3 sinϕ3), and

define Q3 = Rn−1,n(−ϕ3) (if k3 = 0, then ϕ3 is arbitrary). The last two components
of Q2Q1u are zero, so Rn−1,n(ϕ), as a rotation of dimensions n− 1 and n of Rn that
leaves other dimensions alone, must leave Q2Q1u unchanged.

So Q = Q3Q2Q1, as the composition of three primitive rotation operators, must
preserve the dot product, and Qu and Qv all have zero in their last entry, effectively
reducing the dimension of the problem by 1.

In particular, if the dot product of two nonzero vectors is zero, then the angle θ
between them is 90◦ (or π/2 radians). We’ll call vectors with a nonzero dot product
“orthogonal.” This term will also apply even to vector spaces other than Rn that are
harder to give a geometric interpretation.

One final possible terminological confusion that’s important to head off early on:
we call a matrix orthogonal if the columns are what we’ll call orthonormal—that is, not
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only are the columns orthogonal to each other, but each column has norm 1. Matrices
whose columns are merely orthogonal—that is, the dot product of any pair of distinct
columns is zero, but the columns may not have norm 1—don’t have any special name.

7.4 Sesquilinear forms and unitary matrices

Bilinear forms on complex vector spaces aren’t usually very useful. The reason for this
is that we we want a form for which B(v,v) is a measure of the size of v—in particular,
it should be a positive real number. So if we multiply v by any complex number with
magnitude 1—for instance, i—then the value of B(v,v) should remain unchanged. But
this is impossible if B is bilinear, as B(iv, iv) = i2B(v,v) = −B(v,v).

The definition that we’ll use instead is sesquilinear forms. To be precise, a function
S : V 2 → F on a complex vector space V is sesquilinear if it satisfies these require-
ments:

1. It is linear in the second argument: S(u, av1 + bv2) = aS(vu,v1) + bS(vu,v2) for
all u,v1,v2 ∈ V and a, b ∈ C.

2. It is anti-linear in the first argument: S(au1+ bu2,v) = āS(u1,v)+ b̄S(u2,v). That
is, scalar factors in the first argument of S multiply the value of S by their complex
conjugates.

Some books reverse these axioms and make the first argument linear rather than
the second, but when we’re working with matrix and column vector representations,
having the second argument be linear turns out to be more convenient. (Linearity
in the second argument is also the convention in quantum mechanics.) The prefix
“sesqui-” comes from the Latin word for “one-and-a-half” and refers to the fact that
sesquilinear forms are linear in the second argument and in the real part of the first
argument, but not the complex part. The sesquilinear forms that we’re most interested
in are positive-definite forms—that is, forms for which S(v,v) is a positive real number
for every nonzero vector v ∈ V —but positive-definiteness isn’t one of the axioms.

Like real bilinear forms, sesquilinear forms have matrix representations. Specifi-
cally, if {v1, . . . ,vn} is a basis for V , then the Gram matrix of some sesquilinear form
S has an entry of B(vi,vj) at position (i, j). If u,w ∈ V are two vectors with column
vector representations a and b, and M is the Gram matrix of some form S, then S(u,w)
can be computed with the matrix product aHMb. Note that we need to use the conju-
gate transpose aH to make sure that the product aHMb is antilinear in a: multiplying
a by k means multiplying aHMb by k̄.

The sesquilinear equivalent of the dot product (which we’ll often notate using or-
dinary dot product notation) is (z1, · · · , zn) · (w1, · · · , wn) = z̄1w1 + · · · + z̄nwn. Note
that any complex vector dotted with itself produces a positive real number: we can
consider this number to be the squared vector norm, just as with real spaces.

We’ll call a matrix (or a linear operator in Cn represented by that matrix) unitary if
this complex dot product equals zero for any two different columns or 1 for a column
dotted with itself. All of the results that we proved about real orthogonal operators
have analogues for unitary operators: for instance, an operator on Cn is unitary if and
only if the columns of its matrix representation relative to the standard basis have norm
1 and the complex dot product of any two different columns is zero, and the inverse
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of a unitary matrix is also its conjugate transpose. We won’t prove these here, but it
may be a useful exercise for you to go over the proofs in the last section and make the
changes required to have them apply to complex matrices.

Finally, the equivalent concept to congruence for sesquilinear forms is called *-
congruence or star-congruence. Remember, two real matrices J,M are congruent if they
represent the same bilinear form relative to different bases, or equivalently if there’s
some invertible real matrix S such that M = SJST . Two complex matrices are star-
congruent if there’s some invertible complex matrix S such that M = SJSH ; this guar-
antees that the matrices are two representations of the same sesquilinear form.

7.5 Orthogonalization and orthogonal complements

7.5.1 The orthogonal projection operator

Throughout this section, let V be a vector field over a base field F (which is either R
or C. We’ll impose a geometry on V by choosing some basis B of V and defining a
bilinear (if F = R) or sesquilinear (if F = C) form whose Gram matrix with respect to
the basis B is the identity matrix. For this matrix, we’ll use the special notation ⟨u,v⟩.
For any two vectors u,v ∈ B, we have ⟨u,v⟩ = 1 if u = v, and ⟨u,v⟩ = 0 otherwise.
We’ll call this form the inner product on V ; it’s essentially a generalization of the dot
product in Rn. (If V is a finite-dimensional space, in fact, then the Gram matrix of this
form with respect to to B is the identity matrix.)

Even in an infinite-dimensional vector space, all vectors can be written as finite
sums of elements of B. So every quantity ⟨u,v⟩, for arbitrary vectors u,v ∈ V , can be
written as ⟨a1v1 + · · ·+ anvn, b1v1 + · · ·+ bnvn⟩ =

∑n
i=1

∑n
j=1 ⟨aivi, ajvj⟩ where v1, . . . ,vn

are elements of B. This sum equals a1b1 + · · · + anbn if F = R, or ā1b1 + · · · + ānbn if
F = C. This means, crucially, that the inner product is symmetric if F = R (that is,
⟨u,v⟩ = ⟨v,u⟩ for all pairs of vectors u,v ∈ V ), and if F = C, then ⟨u,v⟩ and ⟨v,u⟩ are
always complex conjugates. Sesquilinear inner products whose values change to their
complex conjugates when the arguments are swapped are called Hermitian; this is the
closest that a sesquilinear form can get to being symmetrical.)

The basic problem in this section is this: suppose that we have a set of linearly
independent vectors {u1, . . . ,um}. We’d like to orthogonalize this set: that is, define a
set of linearly independent and orthogonal vectors {w1, . . . ,wm} with the same span.

It turns out, in fact, we can do this and even more: we can guarantee that the set
of vectors {w1, . . . ,wm} satisfies span{v1, . . . ,vj} = span{w1, . . . ,wj} for every integer
1 ≤ j ≤ m. The way we can do this is to define an algorithm called Gram–Schmidt
orthogonalization that uses the following projection operator:

proju v =
⟨u,v⟩
||u||2

u

Note that
⟨u,v⟩
||u||2

is just a scalar, so proju v is a multiple of u. Essentially, we’re

breaking v into two components, a component proju v parallel to u and another com-
ponent v − proju v orthogonal to u (we haven’t yet proved that u and v − projv u are
orthogonal, but we will), and extracting the component parallel to u. For a clear ex-
ample of this, consider the case when u is one of the standard basis vectors e1, . . . , en
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of Fn and the inner product is either the dot product (if F = R) or its sesquilinear
equivalent ⟨(u1, . . . , un), (v1, . . . , vn)⟩ = ū1v1 + · · · + ūnvn (if F = C). In this case,
⟨ei, ej⟩ is 1 if i = j and 0 if i ̸= j. So if v = (v1, . . . , vn) = v1e1 + · · · + vnen, then
⟨ei,v⟩ = v1 ⟨ei, e1⟩+ · · ·+ vn ⟨ei, en⟩ = vi and so projei v = vi

||ei||2ei = ei.
Let’s prove some properties of the projection operator:

Proposition. The coefficient
⟨u,v⟩
||u||2

attached to u in proju v has the following properties:

1. It is the only scalar k ∈ F for which u and v − ku are orthogonal.

2. It is the unique value k ∈ F that minimizes ||v − ku||.

Proof. To prove the first statement: if u and v− ku are orthogonal, then we can expand

0 = ⟨u,v − ku⟩ = ⟨u,v⟩ − k ⟨u,u⟩, so k =
⟨u,v⟩
⟨u,u⟩

=
⟨u,v⟩
||u||2

.

To prove the second statement, we’ll start with the following expansion (remember
that the absolute value of a complex number z is notated |z| =

√
zz̄:

||v − ku||2 = ⟨v − ku,v − ku⟩
= ⟨v,v⟩ − ⟨v, ku⟩ − ⟨ku,v⟩+ ⟨ku, ku⟩
= ||v||2 − k ⟨v,u⟩ − k̄ ⟨u,v⟩+ kk̄||u||2

= ||v||2 − k⟨u,v⟩ − k̄ ⟨u,v⟩+ kk̄||u||2

=

(
k||u|| − ⟨u,v⟩

||u||

)(
k̄||u|| − ⟨u,v⟩

||u||

)
+ ||v||2 − | ⟨u,v⟩ |2

||u||2

=

∣∣∣∣k||u|| − ⟨u,v⟩
||u||

∣∣∣∣2 + ||v||2 − | ⟨u,v⟩ |2

||u||2

(We’re essentially writing ||v− ku||2 as a sort of quadratic equation in k and then com-

pleting the square.) Minimizing this expression means minimizing
∣∣∣∣k||u|| − ⟨u,v⟩

||u||

∣∣∣∣,
the only term in it that depends on k, and the minimum value of this term is zero,

achieved when k =
⟨u,v⟩
||u||2

.

7.5.2 Gram–Schmidt orthogonalization

We can use the projection operator in a procedure that, given any linearly indepen-
dent set of vectors {v1, . . . ,vn}, produces an orthogonal set {w1, . . . ,wn} such that
span{v1, . . . ,vk} = span{w1, . . . ,wk} for every integer 1 ≤ k ≤ n.

The procedure, called Gram–Schmidt orthogonalization, works like this:

1. Define w1 = v1.

2. Define w2 by removing the component of v2 parallel to w1: that is, w2 = v2 −
projw1

v2. Note that projw1
v2 is a scalar multiple of w1, so w2 ∈ span{w1,v2}.

3. Define w3 removing the components of v3 parallel to w1 and w2: that is, w3 =
v3 − projw1

v1 − projw2
v2. As before, w3 ∈ span{w1,w2,v3}.
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4. Continue in the same vein, recursively defining wk = vk − projw1
vk − · · · −

projwk−1
vk.

Once we have an orthogonal basis {w1, . . . ,wn}, we can define an orthonormal ba-
sis {n1, . . . ,nn} simply by rescaling: nk =

wk

||wk||
. The unitary matrix U whose columns

are the coefficients of n1, . . . ,nn relative to the basis v1, . . . ,vn can be interpreted two
ways: first, as a rotation matrix that sends vi to ni; second, as a change-of-basis matrix
that translates from representations relative to {n1, . . . ,nn} to {v1, . . . ,vn}.

7.5.3 Orthogonal complements

One final note. Suppose we have a basis v1, . . . ,vn of a space V of which the first k vec-
tors v1, . . . ,vk are a basis of some subspace W . By using Gram–Schmidt orthogonaliza-
tion, we can get another basis of orthogonal vectors v′

1 = v1,v
′
2 = v2 − projv′

1
v2,v

′
3 =

v3 − projv′
1
v3 − projv′

2
v3, . . . such that v′

1, . . . ,v
′
k is still a basis of W . The remaining

vectors v′
k+1, . . . ,v

′
n form the basis for a space all of whose elements are orthogonal to

every element of W—remember that we can expand the inner product〈
c1v

′
1 + · · ·+ ckv

′
k, ck+1v

′
k+1 + · · ·+ cnv

′
n

〉
into a sum of terms c̄icj ⟨vi,vj⟩ where i ≤ k and j > k, so ⟨vi,vj⟩ = 0. We’ll denote
the span of {v′

k+1, . . . ,v
′
n} by W⊥, and note that its dimension is dimV − dimW . In

particular, if W is a proper subspace of V , then W⊥ must contain at least one nonzero
vector.

The space W⊥, in fact, must contain every vector in V that is orthogonal to every
vector in W : if some vector u = c1v

′
1 + · · · + cnv

′
n is orthogonal to every element in

W , then it must in particular be orthogonal to v′
i for 1 ≤ i ≤ k, so ⟨v′

i,u⟩ = ci = 0.
This space W⊥ is called the orthogonal complement of W , and it’s also the kernel of the
orthogonal projection operator projW (c1v1+ · · ·+ cnvn) = c1v1+ · · ·+ ckvk that projects a
vector onto its “shadow” in a multidimensional subspace. Analogously to projections
onto single-dimensional subspaces, you can prove that projW v is the unique element
w ∈ W such that w and v−w are perpendicular, as well as the element that minimizes
||v −w||.

7.6 Unitary triangularization

We showed back in 6.5 that every operator T : V → V on a complex finite-dimensional
vector space V can be given an upper triangular matrix form—that is, we can find
some basis v1, . . . ,vn of V such that Tvi ∈ span{v1, . . . ,vi} for 1 ≤ i ≤ n.

Now let’s suppose that V is Cn, so we have the sesquilinear dot product as an inner
product on V . Let T be some operator on Cn and let M be its matrix representation
with respect to to the standard basis. Let v1, . . . ,vn be a basis of Cn with respect to
which T has an upper triangular form, and let w1, . . . ,wn be the basis of V derived
from applying Gram–Schmidt orthogonalization to v1, . . . ,vn and then rescaling every
vector to have norm 1; that is, wi ·wj is either 1 if i = j or 0 otherwise.

The basis w1, . . . ,wn also has the property that Twi ∈ span{w1, . . . ,wi}, because the
Gram–Schmidt process guarantees that span{v1, . . . ,vi} = span{w1, . . . ,wi}. Further-
more, the change-of-basis matrix U that translates from column vector representations
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relative to w1, . . . ,wn to column vector representations relative to the standard basis
e1, . . . , en is the matrix with w1, . . . ,wn written as columns. That is, U has orthonor-
mal columns, so it is a unitary matrix. The inverse matrix U−1 translates the other
way, and for unitary matrices, U−1 = UH , giving us a matrix factorization M = UΓUH

where Γ is upper triangular and M is unitary. That is, every square complex matrix can be
triangularized via a unitary change-of-basis matrix.

This result may be interesting by itself, but it’s also a key building block of the
culminating result of this chapter: a set of spectral theorems proving that several large
classes of matrices are always diagonalizable.

7.7 Symmetric forms and self-adjoint operators

First, a bit of vocabulary. Let V be a vector space over a field F, and let B : V 2 → F be
a bilinear form.

Definition. B is symmetric if B(u,v) = B(v,u) for all vectors u,v ∈ V .

Remark. If B is symmetric, then the matrix representation of B relative to any basis
also has to be symmetric: remember that B(vi,vj) gives entry (i, j) of the Gram matrix
relative to the base {v1, . . . ,vn}.

Definition. A symmetric bilinear form B is degenerate if there’s some fixed vector u ∈ V
whose product with every other vector is zero: that is, B(u,v) = 0 for all v ∈ V , or (equiva-
lently) T (v) = B(u,v) is the zero map from V to F. Since B is symmetric, taking the second
argument fixed and the first variable gives us an equivalent criterion: B is degenerate if there’s
some fixed v such that u 7→ B(u,v) is the zero map. A symmetric bilinear form that is not
degenerate is called, naturally enough, nondegenerate.

You can tell whether B is degenerate or nondegenerate simply by computing the
rank of its Gram matrix, thanks to the following proposition:

Proposition. If B : V 2 → R is a symmetric bilinear form on a finite-dimensional real vector
space V , then its Gram matrix relative to an arbitrary basis of V is invertible if and only if B is
nondegenerate.

Proof. Let S be an arbitrary basis of V , let n = dimV , and let MB be the Gram matrix
of B relative to S. We will prove two claims:

1. If B is degenerate, then MB is noninvertible. Suppose v ∈ V is some fixed nonzero
vector such that B(u,v) = 0 for all u ∈ V . Let a,b ∈ Coln(R) be representations
relative to S of the arbitrary vector u and the fixed vector v. Then aTMBb = 0 for
all a ∈ Coln(R). In particular, choosing a = MBb gives (MBb)

TMBb = 0. But this

expression is the squared norm of MBb; i.e. if MBb =

x1
...
xn

, then (MBb)
TMBb =

x2
1+ · · ·+x2

n. If this expression is zero, then MBb = 0Coln(R); that is, b is a nonzero
element of nullspMB, so MB can’t be invertible.
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2. If MB is noninvertible, then B is degenerate. Let b be some nonzero element of the
nullspace of MB: that is, MBb = 0Coln(R) and so aTMBb = 0 for all a ∈ Coln(R).
Every element u ∈ V corresponds to some a ∈ Coln(R), so if we let v ∈ V
be the vector with representation b, then aTMBb = 0 for all a ∈ Coln(R), then
B(u,v) = 0 for all u ∈ V , and B is degenerate.

Now suppose B : V 2 → R is a symmetric bilinear form on a real finite-dimensional
vector space. (We’ll later define an analogous notion for complex vector spaces.) Let
T : V → V and T † : V → V be two linear operators. We’ll say that T † is an adjoint of T
if the equation B(u, Tv) = B(T †u,v) for all pairs of vectors u,v ∈ V .

If B is the dot product with respect to some basis S—that is, its matrix representa-
tion relative to S is the identity—then you can get an adjoint of T by writing its Gram
matrix relative to S, transposing it, and interpreting the result as a Gram matrix also
relative to S. How come? If MB,MT ,M

†
T are the matrix representations relative to S of

B, T, T † respectively, then the equation B(u, Tv) = B(T †u,v) for all elements u,v ∈ V

translates into the matrix equation aTMBMTb = (M †
Ta)

TMBb for all column vectors
a,b ∈ Coln(R). That is, M †

T must satisfy MBMT = (M †
T )

TMB, so if MB = I , then
M †

T = MT
T .

We can also use matrices to get one adjoint if B is not the dot product (i.e. if MB

is not the identity), but MB is still invertible. In this case, the equation aTMBMTb =

(M †
Ta)

TMBb is still satisfied if M †
T = (MBMTM

−1
B )T . This gives us a construction for an

adjoint relative to any bilinear form with an invertible Gram matrix—that is, relative
to any nondegenerate bilinear form.

We’ve referred to T † as an adjoint of T , not the adjoint, but it turns out that if B
is nondegenerate, this caution is unnecessary: every operator has one and only one
adjoint relative to B.

Proposition. If B is a nondegenerate symmetric bilinear form on a finite-dimensional real
vector space V , then every linear operator T : V → V has exactly one adjoint relative to B.

Proof. We know that transposing T ’s Gram matrix gives one adjoint. To prove that
the adjoint is unique, suppose that T †

1 and T †
2 both satisfy B(T †

1u,v) = B(T †
2u,v) =

B(u, Tv) for all vector pairs u,v ∈ V . If T †
1 and T †

2 are distinct maps, then there’s some
u such that T †

1u ̸= T †
2u. Then 0 = B(T †

1u,v) − B(T †
2u,v) = B(T †

1u − T †
2u,v) for every

v ∈ V by linearity of B in the first argument. But then B is degenerate, a contradiction.

If B is degenerate, on the other hand, then operators can have multiple adjoints
relative to B. In the simplest case, B is the zero form B(u,v) = 0 for all u,v ∈ V .
In this case, B(T †u,v) = B(u, Tv) for any pair of operators T, T † ∈ End(V ), so every
operator is an adjoint of every operator.

We’ll usually be interested in bilinear forms B that can be represented relative to
some basis as the identity matrix. Relative to such a form B, an operator is self-adjoint—
that is, it is its own adjoint—if its matrix representation with respect to the same basis
is symmetric.

For complex vector spaces, the analogous concepts are Hermitian sesquilinear prod-
ucts; that is, those for which S(u,v) and S(v,u) are always complex conjugates of each
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other. Gram matrices of sesquilinear products are Hermitian, and an operator and its
adjoint with respect to a sesquilinear form have matrix representations that are conju-
gate transposes of each other.

One final note that may be useful in higher mathematics and in quantum physics: an adjoint in the
sense that we’ve defined it may not exist for infinite-dimensional vector spaces. Consider, for example,
the space R∞ of infinite sequences of real numbers that have only a finite number of nonzero entries,
and let B be the dot product (x1, x2, . . .) · (y1, y2, . . .) = x1y1 + x2y2 + · · · (this sum only has a finite
number of nonzero terms, so it always converges). Let T ∈ End(R∞) be the operator T (x1, x2, x3, . . .) =
(x1 + x2 + x3 + · · · , 0, 0, . . .). Then (x1, x2, . . .) · T (y1, y2, . . .) = x1(y1 + y2 + · · · ), so the adjoint T † with
respect to B could only have the formula T †(x1, x2, x3, . . .) = (x1, x1, x1, . . .). But (x1, x1, x1, . . .) has an
infinite number of nonzero entries if x1 ̸= 0, so it is not an element of R∞.

In real analysis, adjoint operators are defined as operators on the dual space V ∗ of V , which is the
set of linear functions from V to its base field F. For instance, the map T : R∞ → F with the formula
f(y1, y2, y3, . . .) = x1y1 + x2y2 + x3y3 + · · · , where x1, x2, x3, . . . are fixed coefficients that could all be
infinite, is an element of the dual space of R∞, and we can identify this map with the infinite sequence
(x1, x2, x3, . . .) ∈ RN. (Remember: RN contains infinite sequences with a potentially infinite number
of nonzero entries.) The adjoint of an operator T : V → V is the operator T † : V ∗ → V ∗ defined as
T †(f) = f ◦ T : that is, (T †(f))(v) = f(Tv) for every vector v ∈ V and element f : V → F of the dual
space. In finite-dimensional vector spaces, we can use the bilinear form B to establish an isomorphism
between V and V ∗ that identifies every vector u ∈ V with the map v 7→ B(u,v), and this identification
lets us define “adjoints” as operators on V , not V ∗.

7.8 Normal matrices and the finite-dimensional spectral
theorem

Spectral theorems (sometimes referred to in the singular as the spectral theorem, because
spectral theorems in different contexts are quite similar) are results guaranteeing the
existence of eigenvectors for certain special matrices or linear operators. The results on
matrices also guarantee some important results for the structure of bilinear forms.

For finite-dimensional vector spaces, the most important spectral theorem concerns
one special class of matrices:

Definition. A square matrix M with complex (possibly all real) entries is normal if it com-
mutes with its conjugate transpose: that is, MMH = MHM .

Remark. As (MH)H = M , so if M is normal, then so is MH .

The word “normal” is a bit misleading, because most matrices aren’t normal. Sev-
eral important classes of matrices, however, are normal:

1. Diagonal matrices: if M is diagonal, then MMH and MHM are also diagonal,
and their diagonal entries are the squared absolute values of the corresponding
entries of M .

2. Hermitian matrices. If M = MH , then MHM = MMH = M2.

3. Real symmetric matrices, as a subclass of Hermitian matrices.

4. Skew-Hermitian matrices (i.e. matrices that equal their negative conjugate trans-
poses). If −M = MH , then MHM = MMH = −M2.

5. Real skew-symmetric matrices, as a subclass of skew-Hermitian matrices.

6. Unitary matrices, as UHU = UUH = I .
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7. Real orthogonal matrices, as a subclass of unitary matrices.

One crucial class of provably non-normal matrices, though, are the triangular ma-
trices with at least one off-diagonal element..

Proposition. No triangular non-diagonal matrix with real or complex entries is normal.

Proof. We’ll prove that any normal upper triangular matrix must be diagonal. The
proof for lower triangular matrices is symmetrical, but it also follows as a corollary
from the result for upper triangular matrices: M is normal if and only if MH is normal,
and every lower triangular matrix has an upper triangular conjugate transpose.

Let R ∈ Mn×n(C) be upper triangular, and write rij for the entry in row i and
column j of R. Let αi be the ith diagonal entry of RHR (which is also the squared norm
of the ith column of R; that is, αi = |r1i|2+ · · ·+ |rii|2). Let βi be the ith diagonal entry of
RRH (which is also the squared norm of the ith row of R; that is, βi = |rii|+ · · ·+ |rin|2).

Suppose that R is normal: that is, RHR = RRH . Then αi = βi for all i. Thus:

1. α1 = |r11|2 and β1 = |r11|2+ |r12|2+ · · ·+ |a1n|2. So the off-diagonal first-row entries
r12 through r1n must be all zero.

2. α2 = |r12|2+ |r22|2 and β2 = |r22|2+ |r23|2+ · · ·+ |r2n|2. But we have already shown
r12 = 0, so the off-diagonal second-row entries r23 through r2n must also be zero.
(r21 is also zero, of course, because it’s a below-diagonal element and R is upper
triangular.)

3. α3 = |r13|2 + |r23|2 + |r33|2 and β3 = |r33|2 + |r34|2 + · · · + |r3n|2. But we have
already shown that r13 = r23 = 0, so the third row must also be all zeros except
the diagonal entry r33.

By continuing, we can prove that rij = 0 whenever i ̸= j, so R is diagonal.

This lemma gives us the most important result of the section:

Theorem (Finite-dimensional complex spectral theorem). If M is a normal matrix, then
M can be factored as M = UHΛU , where U is a unitary matrix and Λ is diagonal.

Proof. We know that every matrix is similar to an upper triangular matrix via a unitary
change-of-basis matrix (Section 7.6), so write M = UHRU where R is upper triangular
and U is unitary. We’ll prove that R is normal, so it has to be diagonal.

Remember that (ABC)H = CHBHAH for any matrices A,B,C, and also that UH =
U−1. So MMH = (UHRU)(UHRU)H = (UHRU)(UHRHU) = UHRRHU and MHM =
(UHRU)H(UHRU) = (UHRHU)(UHRU) = UHRHRU . If M is normal (that is, MMH =
MHM ), then UHRRHU = UHRHRU . Multiplying both sides of this equation by U on
the left and UH on the right leaves RRH = RHR, so R must be normal as well. But the
only normal triangular matrices are diagonal, so R is diagonal.

Translated from matrix language into operator language, this result is:

Corollary. If T : Cn → Cn is an operator whose matrix representation relative to the standard
basis is a normal matrix, then there is a basis of Cn made up entirely of eigenvectors of T that
are orthogonal to one another relative to the standard sesquilinear dot product.
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A few more important corollaries:

Corollary. For normal matrices, similarity implies star-congruence.

Proof. First, suppose M1,M2 are similar normal matrices. Any pair of similar matri-
ces, whether or not they’re normal, must have the same Jordan normal form. By the
spectral theorem, the Jordan normal form for a normal matrix is a diagonal matrix
Λ, and we can choose the change-of-basis matrices S1, S2 giving M1 = S1ΛS

−1
1 and

M2 = S2ΛS
−1
2 such that S1 and S2 are unitary, and M1 = S1ΛS

H
1 and M2 = S2ΛS

H
2 . So

M1 and M2 are star-congruent to Λ. And star-congruence is transitive, so M1 and M2

are star-congruent to each other.

Corollary. Eigenvectors of a normal matrix with complex entries and distinct eigenvalues
must be orthogonal to each other.

Proof. Let M be a normal matrix, and diagonalize it as M = UHΛU where u1, . . . ,un ∈
Coln(C) are the columns of U . These column vectors, of course, are all eigenvalues of
M and orthonormal to each other, and every element of Coln(C) can be written as a
linear combination of u1, . . . ,un.

Remember from page 92 that a linear combination of eigenvectors can be an eigen-
vector itself if and only if all the eigenvectors in the linear combination have the same
eigenvalue. So if v1,v2 ∈ Coln(C) are eigenvectors of M with distinct eigenvalues
µ1, µ2, then v1 must be a linear combination of the subset of {u1, . . . ,un} consisting
of vectors with eigenvalue µ1, and v2 is a linear combination of the necessarily disjoint
subset of {u1, . . . ,un} consisting of vectors with eigenvalue µ2. So if we expand vH

1 v2

into a sum of terms of the form uH
i uj , then none of these terms will ever have i = j,

and uH
i uj = 0 if i ̸= j. So vH

1 v2 = 0.

7.9 Eigenvalues and eigenvectors of some normal matri-
ces

In this section, we’ll present a grab-bag of results about the eigenvectors of certain
important classes of matrices that the preceding sections’ theorems have let us establish
easily. These results prove to be very important in other fields, especially many fields
of physics—such as quantum mechanics and the study of rotating rigid bodies—that
involve symmetrical or Hermitian matrices.

7.9.1 Hermitian and real symmetric matrices

The two most important facts about Hermitian matrices, beyond the general results of
the spectral theorem, are:

1. Their eigenvalues are real.

2. Real symmetric matrices can be diagonalized by real orthogonal, not merely uni-
tary, matrices—that is, they have an orthogonal eigenbasis of vectors with only
real entries.



230 CHAPTER 7. INNER PRODUCTS AND VECTOR SPACE GEOMETRY

These results have wide application in other fields of mathematics and physics, so
they’re worth knowing! Now we’ll present proofs.

Proposition. The eigenvalues of a Hermitian matrix are real.

Proof. Let H be a Hermitian (possibly real symmetric) n×n matrix, and let v ∈ Coln(C)
be a nonzero vector such that Hv = λv and, therefore, vHH = (HHv)H = (Hv)H =
(λv)H = λvH . Then vH(Hv) = vH(λv) = λ ||v||2 and (vHH)v = (λvH)v = λ ||v||2. But,
of course, vH(Hv) = (vHH)v, so λ = λ: that is, λ is real.

Proposition. Any real symmetric matrix can be diagonalized by a real orthogonal matrix (i.e. a
unitary matrix with all real entries).

Proof. Recall from page 198 that if a matrix M with all real entries has a real eigenvalue
λ with multiplicity k, then we can choose k column vectors with all real entries as
a basis for the eigenspace. Then the Gram–Schmidt process creates an orthonormal
basis with equal span.

Finally, remember that that eigenvectors of any normal matrix with distinct eigen-
values must be orthogonal. So if we have orthonormal bases for each eigenspace of a
real symmetric matrix M , then every element of one basis must also be orthogonal to
every element of every other basis, and we can take the union of these bases to get an
orthonormal basis for all of Coln(R). Combining these column vectors into a change-
of-basis matrix gives a real orthogonal matrix that diagonalizes M .

One important consequence of this finding is the existence of principal axes for
quadratic forms. Consider the function f : R3 → R given by f(x, y, z) = αx2 + βy2 +
γz2 + δxy + ϵxz + ζyz. A sum of products of two variables like this is called a quadratic
form. f can be expressed in matrix form as

f(x, y, z) =
[
x y z

]  α δ/2 ϵ/2
δ/2 β ζ/2
ϵ/2 ζ/2 γ

xy
z


The central matrix is symmetrical, so it can be diagonalized by a real orthogonal ma-
trix that gives new orthonormal coordinates u, v, w in terms of x, y, z. The resulting
quadratic form has the form λ1u

2 + λ2v
2 + λ3w

2; the new coordinates u, v, w are called
the principal axes of f . The quantities λ1, λ2, λ3 are simply the eigenvalues of the matrix
representation of f , and this matrix is evidently positive definite if and only if all of the
quantities λ1, . . . , λn are positive.3

The equivalent findings for quadratic forms in two variables, or in four or more,
also hold, and can have interesting geometric interpretations. For instance, the generic

quadratic form in two variables is f(x, y) = αx2 + βxy + γy2 =
[
x y

] [ α β/2
β/2 γ

] [
x
y

]
,

3In physics, this finding helps us analyze the motion of rigid objects in zero gravity or free fall. The
rotational momentum of a rigid object is the product of a real symmetrical 3 × 3 matrix I , the object’s
moment-of-inertia tensor, with the angular rotation vector ω, which points along the object’s axis of ro-
tation and has a magnitude equal to the speed of rotation. If the rotational momentum and rotational
velocity are not aligned (that is, if ω is not an eigenvector of I), then the object’s axis of rotation pre-
cesses, as in the wobble of a poorly thrown football. The spectral theorem, though, shows that any rigid
body in three dimensions has three perpendicular axes about which it will rotate without precession.
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and equations of the form f(x, y) = k for some constant k define conic sections. The
value of the matrix determinant αγ − β2/4 determines the type of this conic section:
if the determinant is positive, then f(x, y) = k determines an ellipse (for example,
x2 + 2y2 = 1, whereas if it is negative, then f(x, y) = k determines a hyperbola (for
example, xy = 1 or x2 − y2 = 2).

Finally, we have one vital corollary: a Hermitian matrix is positive definite if and
only if it has all positive eigenvalues. Let v1, . . . ,vn be an orthonormal eigenbasis of H
with corresponding eigenvalues λ1, . . . , λn: that is, vH

i vj is 1 if i = j and 0 otherwise.
Then if v = c1v1 + · · · + cnvn, then vHHv = |c1|2λ1 + · · · + |cn|2λn. If all of the λi are
positive, then this expression is also positive as long as v ̸= 0; if λi ≤ 0, however, then
vH
i Hvi ≤ 0 as well.

7.9.2 Skew-Hermitian and real skew-symmetric matrices

The most important finding is this:

Proposition. The eigenvectors of any skew-Hermitian (including real skew-symmetric) matrix
are purely imaginary.

Proof. Let S be skew-Hermitian (possibly real skew-symmetric). If Sv = λv, then
vHS = (SHv)H = (−Sv)H = (−λv)H = −λvH . So by a similar argument to our
proof that Hermitian matrices have all real eigenvalues, λ = −λ; that is, λ is purely
imaginary.

One corollary: since non-real eigenvalues of a real matrix occur in conjugate pairs
(because they’re roots of the characteristic polynomial, which has all real coefficients),
every real skew-symmetric matrix of odd dimension has 0 as an eigenvalue, so it does
not have full rank.

7.9.3 Unitary and real orthogonal matrices

The most important result is this:

Proposition. The eigenvalues of a unitary matrix have absolute value 1 (i.e. they’re located on
the complex unit circle.

Proof. If U is a unitary (possibly real orthogonal) matrix, then U has to preserve the
norm of any column vector: Ua has the same norm as a for any a ∈ Coln(C). In
particular, if a is an eigenvector of U with eigenvalue λ, then a and λa must have the
same norm, so |λ| = 1.

7.10 Sylvester’s law of inertia

Sylvester’s law of inertia is a result that completely classifies symmetric bilinear (or
Hermitian sesquilinear) forms up to change of basis; you can think of this as the equiv-
alent of Jordan normal form for such bilinear or sesquilinear forms. We’ll prove it
for real spaces and bilinear forms; the statement and proof for complex spaces and
sesquilinear forms is rather more complicated. First, a preparatory lemma.
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Lemma. Let V be a finite-dimensional real vector space and B : V 2 → R a symmetric bilinear
form. Call a subspace W ⊆ V a positive subspace with respect to B if B(w,w) > 0 for
every nonzero w ∈ W , and a negative subspace if B(w,w) < 0 for every nonzero w ∈ W .
(By this definition, {0} is both a positive subspace and a negative subspace.) Call a positive (or
negative) subspace maximal if no larger positive (or negative) subspace contains it.

Then all maximal positive subspaces of V with respect to B have the same dimension, as do
all maximal negative subspaces.

Proof. We’ll prove that all maximal positive subspaces have the same dimension; the
proof that all negative subspaces have the same dimension is practically identical.4

Let {v1, . . . ,vn} be a basis of V that gives B a diagonal Gram matrix with diagonal
entries λ1, . . . , λn: that is, B(vi,vi) = λi, and B(vi,vj) = 0 if i ̸= j. (By the spectral
theorem, such a matrix must exist.) We can order v1, . . . ,vn in descending order of
eigenvalues, so there’s some integer k such that λ1, . . . , λk > 0 and λk+1, . . . , λn ≤ 0. (If
every eigenvalue is nonpositive, then k = 0.)

Define W := span{v1, . . . ,vk} and W⊥ := span{vk+1, . . . ,vn}. We claim that W is a
maximal positive subspace. Proof:

1. W is positive: if w = c1v1+· · ·+ckvk ∈ W , then B(w,w) = c21λ1+· · ·+c2kλk is a sum
of non-negative terms at least one of which must be positive if c1v1+· · ·+ckvk ̸= 0.

2. W is maximal: if W ′ is a larger subspace that includes W and some additional
vector w′ = c1vn + · · · + cnvn that is not in W (meaning one of the coefficients
ck+1, . . . , cn is nonzero), then x := w′ − c1vn − · · · − ckvk = ck+1vk+1 + · · · + cnvn

is a nonzero linear combination of elements of W ′, so it must also be in W ′. But
x ∈ W⊥ and B(x,x) = c2k+1λk+1 + · · ·+ c2nλn ≤ 0, so W ′ is not positive.

So W is a maximal positive subspace with dimension k. To prove that all maximal
subspaces have dimension k, we need two more results:

Any subspace with dimension greater than k cannot be positive. Suppose U is a
subspace with dimension k + 1 or greater, and recall the subspace dimension lemma
dim(U+W⊥)+dim(U ∩W⊥) = dimU+dimW⊥ from section 1.9. Since dimW⊥ = n−k
and dimU > k, but dim(U +W⊥) ≤ dimV = n, it follows that dim(U ∩W⊥) > 0: that
is, U shares at least one nonzero vector (call it u) with W⊥. So B(u,u) ≤ 0, so U cannot
be positive.

Any positive subspace with dimension less than k cannot be maximal. Call two
vectors u,v “orthogonal” if B(u,v) = 0. Also define the operator projW v to be the
result of writing v as a linear combination of v1, . . . ,vn and changing the coefficients
of vk+1, . . . ,vn to zero. Note that if v = a1v1+· · ·+anvn is an arbitrary element of V and
w = b1w1+ · · ·+bkwk is an arbitrary element of W , then B(v,w) = a1b1+ · · ·+akbk, and
changing ak+1, . . . , an has no effect on B(v,w). In particular, B(projW v,w) = B(v,w).

Now suppose that U is a positive subspace with dimension less than k. Let U ′ :=
{projW u : u ∈ U} ⊂ W be the orthogonal projection of all elements of U into W . As
dimU ′ ≤ dimU < dimW , the orthogonal complement of U ′ in W must have positive
dimension: that is, there’s some nonzero vector w ∈ W orthogonal to all of U ′. As

4It may be a useful exercise to go through this proof and make the necessary changes to apply it to
negative subspaces.
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B(u,w) = B(projW u,w) for any u ∈ U,w ∈ W , so w must also be orthogonal to all of
U .

So every vector in U ⊕ span{w} can be written in the form u + kw where u ∈ U
and k ∈ R. Thus, B(u + kw,u + kw) = B(u,u) + 2kB(u,w) + k2B(w,w). As B(u,u)
and B(w,w) are positive and B(u,w) = 0, it follows that U ⊕ span{w} is a positive
subspace that strictly contains U , so U cannot be maximal.

Theorem (Sylvester’s law of inertia for real matrices). Let J and M be two symmetric
matrices with all real entries (and, necessarily, all real eigenvalues with real orthogonal eigen-
vectors). Then J and M are congruent if and only if they have the same number of positive,
negative, and zero eigenvalues (counted up to multiplicity). That is, if J has characteristic
polynomial (x − λ1) · · · (x − λn) and M has characteristic polynomial (x − µ1) · · · (x − µn),
then we can order the roots λi and µi such that λi and µi are both positive, both zero, or both
negative for all indices 1 ≤ i ≤ n.

Proof. This theorem states an if-and-only-if result, so we need to prove two implica-
tions.

Eigenvalue condition implies congruence. First, suppose that J and M follow
the stated condition on the eigenvalues, and suppose the eigenvalues λi and µi are or-
dered so that λi and µi are both positive, both zero, or both negative for every index i.
Let ΛJ be the diagonal matrix with entries λ1, . . . , λn and let ΛM be a diagonal matrix
with entries µ1, . . . , µn. Then J and ΛJ are real symmetric (and therefore normal) ma-
trices that are similar to each other, so they are also congruent to each other (see page
229). Likewise, M and its diagonalization ΛM are also congruent.

Finally, ΛJ and ΛM are congruent as ΛM = SΛJS
T , where S is a diagonal matrix

whose ith diagonal entry is
√
µi/λi if λi and µi are either both positive or both negative

and arbitrary if λi = µi = 0. Matrix congruence is transitive, so J and M are congruent.

Congruence implies eigenvalue condition. Suppose again that J and M are con-
gruent real symmetric matrices. Then if ΛJ and ΛM are diagonal matrices similar (and
thus congruent) to J and M respectively, then ΛJ and ΛM must be congruent to each
other. So we only need to prove that congruence implies the eigenvalue condition for
diagonal matrices—whose eigenvalues, of course, are also their diagonal entries.

Suppose that B : (Rn)2 → R is a bilinear form represented by ΛJ relative to the basis
v1, . . . ,vn (with eigenvalues λ1, . . . , λn) and by ΛM relative to the basis w1, . . . ,wn (with
eigenvalues µ1, . . . , µn). The set of vectors vi such that the corresponding eigenvalues
λi are positive gives a basis for a maximal positive subspace of Rn with respect to B.
(Adding any other vector to this space would mean adding a linear combination of
the vectors vi for which λi ≤ 0.) Similarly, the set of vectors wi such that µi > 0 is
also a basis of a maximal positive subspace. But these two maximal positive spaces
must have equal dimension, so ΛJ and ΛM must have an equal number of positive
entries. Similarly, ΛJ and ΛM must have an equal number of negative entries, and all
the remaining entries must be zero.

As a final note, Sylvester’s law of inertia also applies to complex Hermitian matrices
(which also must have real eigenvalues). There is an even futher generalization for all
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normal matrices: the star-congruence of two normal matrices is determined by the
complex arguments of their eigenvalues. (Remember that the argument of a complex
number z is the angle 0 ≤ θ < 2π for which z = r(cos θ + i sin θ) for some positive real
number r.) Specifically, two normal matrices J and M are star-congruent if and only if
they have the same number of zero eigenvalues and, for each angle θ, the same number
of eigenvalues with argument θ. (Since positive reals have argument zero and negative
reals have argument π, and real symmetric matrices are also Hermitian matrices, this
means that star-congruence and regular congruence for real symmetric matrices are
equivalent.)



Chapter 8

Tensor products

In section 5.3, we gave an introduction to the theory of multilinear, symmetric, and
alternating linear maps. We noted in particular that multilinear maps from V n to W
are generally different from linear maps that treat V n as a single vector space with
operations extended from V .

There is, however, a way to construct another vector space X such that multilinear
maps V n → W always correspond to linear maps X → V . Building this space requires
a new concept called the tensor product which, though it requires a couple of leaps
of abstraction, doesn’t introduce any fundamentally new mathematics. We can also
represent symmetric and alternating maps on V n as linear maps on a certain quotient
space of X .

The tensor product and the other ideas that we build in this chapter may seem like
another tower of abstractions without much payoff. There are, however, a few benefits
that can at least be alluded to up front:

1. We can find cleaner expressions of some definitions and results that we have
already proved, such as the concept of a matrix determinant.

2. We can derive several important results about the trace of a matrix, or the sum of
its diagonal entries (equivalently, the sum of its eigenvalues), without having to
deal with matrix.

3. In quantum mechanics—a subject that I anticipate many readers will go on to
study, and that relies heavily on linear algebra—tensor, symmetric, and alternat-
ing products are the natural way to represent the possible states of multi-particle
systems.

With that out of the way, let’s begin.

8.1 Free vector spaces

Suppose that S is a set of some elements—say, S = {X, Y, Z}. We don’t know anything
about X , Y , and Z: they could be any mathematical objects. Nevertheless, if we have
some field F, we can write “linear combinations” of the elements of S with coefficients
taken from F, like aX + bY + cZ with a, b, c ∈ F. (We’ll allow any number of the
coefficients to be zero: in particular, a = b = c gets us the zero element.)

235
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These linear combinations are just abstract expressions that don’t have any values
(mathematicians have a special name for expressions that aren’t necessarily evaluable:
formal expressions): for the purpose of constructing a free vector space, we have no idea
what aX is, nor how we could add it to bY . Nevertheless, we can turn this set of linear
combinations into a vector space in a natural way: multiplication is k(aX+ bY + cZ) =
(ka)X + (kb)Y + (kc)Z, and addition is (a1X + b1Y + c1Z) + (a2X + b2Y + c2Z) =
(a1 + a2)X + (b1 + b2)Y + (c1 + c2)Z: you’re allowed to simplify a linear combination
by combining terms that have the same element of S.

The set of finite linear combinations like this is called the free vector space on S.
(Another way to think of the free vector space is as the space of functions from S to
F with a finite number of nonzero values: the value of a function on any x ∈ S in the
function representation of the free vector space corresponds to the coefficient of x in
the formal linear combination representation. For instance, aX + bY + cZ corresponds
to the function f : S → F with f(X) = a, f(Y ) = b, f(Z) = c. Vector space operations
in the function representation of the free vector space are just pointwise operations on
corresponding function values.)

Again, the elements of free vector spaces are just abstract linear combinations with-
out reference to any values they might have: the objects of the underlying set are
opaque. For instance, if S is the set of three vectors {(1, 0), (0, 1), (1, 1)} from R2, then
two distinct elements of the free vector space on S are 2(1, 0) + 3(1, 1) and 6(1, 0) +
4(0, 1) − (1, 1). Both of these linear combinations evaluate to (5, 3), of course, but we
consider them different elements of the free vector space because they have different
coefficients on corresponding elements: we’re ignoring any operations that might be
defined on the set S.

Free vector spaces by themselves are pretty boring. Their interest comes when we
can use properties of the underlying set S to define ways in which two linear combina-
tions can be regarded as equivalent—usually not in a completely straightforward way.
We can then define a new vector space that is the quotient of the free vector space by the
subspace of all linear combinations that are equivalent to the trivial linear combination
with every coefficient zero, and this space can have more interesting properties.

8.2 Tensor product of two spaces

Key questions.

1. (⋆) Find the flaw in the following argument: “R2⊗R2 has dimension 4, and every
pure tensor has the form (a, b)⊗(c, d), where a, b, c, d are freely chosen elements of
R. So by dimensional considerations, every element of R2 ⊗ R2 is a pure tensor.”

2. (⋆⋆) Let f : (R2)2 → R be the bilinear map with formula f((x, y), (z, w)) = xz+yw
(this is the ordinary dot product). Give an explicit general form for elements of
the kernel of the corresponding linear map f̃ : R2 ⊗ R2 → R.

8.2.1 Defined

First, a reminder of some notation. Suppose U, V,W are three vector spaces over the
same field F. The space U × V is the set of ordered pairs containing one element of U
and one element of V (in that order). To express that a function f takes one input from
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each of U and V and returns an output in W , we write f : U × V → W . This function
f is bilinear if:

1. f is linear in the first argument: f(k1u1 + k2u2,v) = k1f(u1,v) + k2f(u2, v) for all
u1,u2 ∈ U , v ∈ V , and k1, k2 ∈ F.

2. f is linear in the second argument: f(u, k1v1 + k2v2) = k1f(u,v1) + k2f(u,v2) for
all u ∈ U , v1,v2 ∈ V , and k1, k2 ∈ F.

(This is a natural generalization of our definition in 5.3, which only considered
multilinear functions in which every input came from the same vector space.)

Now let X be the free vector space on U × V : its elements are formal linear combi-
nations k1(u1,v1) + · · ·+ kn(un,vn), where u1, . . . ,un,v1, . . . ,vn are arbitrary elements
of U or V (subject only to the restriction that the same ordered pair (u,v) can’t occur
twice in the same linear combination). As with all free vector spaces, we are keeping
these purely as linear combinations: we’re not trying to evaluate them to an element
of X .

We’ll also adopt a bit of slightly nonstandard notation to make things a bit easier
on your eyes: instead of writing (u,v) for an ordered pair from U × V (i.e. a basis
element of X), write [u,v] instead. Besides avoiding pile-ups of nested parentheses,
this notation should also remind you that since we’re using these ordered pairs as basis
elements of a free vector space, we can’t make any manipulations on them that aren’t
specifically allowed—in particular, we don’t have standard ordered-pair operations
such as addition of corresponding components (u1,v1) + (u2,v2) = (u1 + u2,v1 + v2).

For an easy-to-notate example, let’s take U = R2 and V = R3. Then some elements
of X are 3[(1,−2), (−2, 10, π)]− 5[(4, 2), (−2, 10π)] (a linear combination of two ordered
pairs) and 6[(0, 0), (1

6
, 3
6
, 5
6
)] (a linear combination of one ordered pair).

You may be instinctively looking for ways to simplify these expressions, by some-
how “factoring out” the (−2, 10, π) from 3[(1,−2), (−2, 10, π)] − 5[(4, 2), (−2, 10π)], or
trying to distribute the 6 in 6[(0, 0), (1

6
, 3
6
, 5
6
)]. This is a good impulse, and the purpose

of the construction that we’re about to define is to give a space derived from the free
vector space that allows these simplifications! But in the free vector space itself, the
elements of U × V are particles without any discernible internal structure: the only
simplification you’re allowed is combining terms that use the same ordered pair.

Now define a few subspaces of the free vector space X :

1. XLM (the LM is a mnemonic for left multiplication) is the span of all linear combi-
nations of the form

k[u,v]− [ku,v].

In our example space with U = R2 and V = R3, this would include elements like
2[(1, 3), (1, 0, 7)] − [(2, 6), (1, 0,−7)] (and its multiples such as −8[(1, 3), (1, 0, 7)] +
4[(2, 6), (1, 0,−7)]).

2. XRM (RM = right multiplication) is the span of all linear combinations of the form

k[u,v]− [u, kv].

3. XLA (LA = left addition) is the span of all linear combinations of the form

[u1 + u2,v]− [u1,v]− [u2,v].
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Again, in our example space with U = R2 and V = R3, this would include ele-
ments like [(1, 3), (π,

√
2, e)]− [(0, 2), (π,

√
2, e)]− [(1, 1), (π,

√
2, e)].

4. XRA (RA = right addition) is the span of all linear combinations of the form

[u,v1 + v2]− [u,v1]− [u,v2].

•

We finally have:

Definition. The tensor product U ⊗ V of two spaces U, V over the same field is the quotient
space X/(XLM +XRM +XLA +XRA), with X,XLM , XRM , XLA, XRA defined as above.

Remember that the elements of a quotient space are cosets of the space in the de-
nominator of the quotient. The point of this construction is that each of the spaces
XLM , XRM , XLA, XRA gives us a way to simplify elements of X to get equivalent el-
ements in the same coset. For instance, if we have an element of X that includes a
term k[u,v], then we can replace it with [ku,v]—or vice versa. The difference between
these two elements of X is k[u,v]− [ku,v], which is in XLM and thus in XLM +XRM +
XLA +XRA, so both elements are part of the same coset of X—that is, they’re different
ways to write the same element of U ⊗ V . Likewise, we can swap [u1 + u2,v] with
[u1,v] + [u2,v]. These same procedures are also valid for changing the right side of an
ordered pair, not the first.

We’ll notate the elements of U ⊗ V as linear combinations (u,v) as an element of
the tensor product as opposed to the free vector space, we’ll use the special notation
u ⊗ v. This notation, remember, really represents an affine subspace of the free vector
space, namely [u,v] + (XLM + XRM + XLA + XLM). (For shorthand, let’s write Y =
XLM + XRM + XLA + XRA.) Addition and multiplication of cosets works like in any
quotient space: for instance, (u1⊗v1)+(u2⊗v2) denotes the coset [u1,v1]+ [u2,v2]+Y
(which is also ([u1,v1] +X) + ([u2,v2] +X) as a sum of affine spaces; see section 1.12.3
if you don’t remember this), and k(u⊗ v) denotes the coset k[u,v] + Y .

Unlike the free group X , the tensor product U ⊗V has operations that let us change
sums of tensors to equivalent sums of other tensors. (Two expressions with tensors
are equivalent if when you change every constituent pure tensor u ⊗ v back to [u,v],
you get two expressions in X that are in the same coset of Y .) Specifically, we have the
relations (ku) ⊗ v = k(u ⊗ v) (that is, [ku,v] and k[u,v] are in the same coset of Y ) as
well as (u1 + u2) ⊗ v = u1 ⊗ v + u2 ⊗ v (that is, [u1 + u2,v] and [u1,v] + [u2,v] are in
the same coset of Y ). Similar relations hold for the right-hand sides of tensors.

But be warned that there are some tempting operations on tensors that don’t ac-
tually give valid results. Component-by-component addition of tensors, for instance,
doesn’t work: in general, u1⊗v1+u2⊗v2 ̸= (u1+u2)⊗ (v1+v2). (A correct formula is
(u1+u2)⊗ (v1+v2) = u1⊗v1+u1⊗v2+u2⊗v1+u2⊗v2.) You also can’t distribute a
coefficient into both sides of a tensor once: in general, k(u⊗v) ̸= (ku)⊗ (kv) (a correct
formula would be k2(u⊗ v) = (ku)⊗ (kv)).

8.2.2 Simplifying tensor sums

For instance, suppose we wanted to simplify the tensor sum x = (2, 4) ⊗ (1, 0,−3) +
2(0, 2)⊗ (2, 0,−6)+3(1, 2)⊗ (1, 2, 5). There are a few ways we could try to do this. One
way would be:
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1. Factor a 2 out from the right of 2(0, 2) ⊗ (2, 0,−6) to get 4(0, 2) ⊗ (1, 0,−3) (the
difference between these expressions is in XRM ). The entire expression for x is
now (2, 4)⊗ (1, 0,−3) + 4(0, 2)⊗ (1, 0,−3) + 3(1, 2)⊗ (1, 2, 5)

2. Factor the coefficient of 4 in 4(0, 2) ⊗ (1, 0,−3) back into the first vector to get
(0, 8) ⊗ (1, 0,−3) (the difference between these expressions is in subspace XLM ).
We now have x = (2, 4)⊗ (1, 0, 3) + (0, 8)⊗ (1, 0,−3) + 3(1, 2)⊗ (1, 2, 5).

3. Combine (2, 4)⊗(1, 0,−3)+(0, 8)⊗(1, 0,−3) into (2, 12)⊗(1, 0,−3) (the difference
between these expressions is in XLA). We now have x = (2, 12) ⊗ (1, 0,−3) +
3(1, 2)⊗ (1, 2, 5).

It’s not obvious how to simplify this expression any further, and indeed, most ele-
ments of U ⊗ V are not so-called “pure tensors” that can be written as a single element
u⊗v. But this isn’t the only way to write x as the sum of two pure tensors: for instance,
we could have combined the first and third terms in the original expression, instead of
the first and second, to get x = (1, 2)⊗ (5, 6,−21) + 2(0, 2)⊗ (2, 0,−6).

We can, however, prove two useful results from pure tensor manipulation:

Proposition. The map ιU⊗V : U × V → U ⊗ V defined as ιU⊗V (u,v) = u⊗ v is bilinear.

Proof. Straightforward. Linearity in the first argument is ιU⊗V (au1 + bu2,v) = (au1 +
bu2)⊗ v = a(u1 ⊗ v) + b(u2 ⊗ v) by the left-addition and left-multiplication properties
of tensors, and the same logic works for linearity in the second argument.

Proposition. All pure tensors u ⊗ v where either u = 0U or v = 0V are equal to the zero
element (i.e. additive identity) of U ⊗ V .

Proof. By the right-multiplication property we have u ⊗ 0V = u ⊗ (0v) = 0(u ⊗ v) for
arbitrary u,v (and likewise 0U⊗v = 0(u⊗v)), and the basic vector space axioms imply
that 0 times any vector is 0.

Remark. This is in fact an if-and-only-if result: u ⊗ v = 0U⊗V if and only if u = 0U of
v = 0V . But we can’t prove the only-if implication just yet.

8.2.3 Universal property of the tensor product

Motivation and definition

A natural question when we encounter any new vector space is to find its basis and
dimension. It’s easy enough to find a spanning set:

Proposition (Pure tensors constructed from bases of constituent spaces span the tensor
product). Suppose U and V are vector spaces over the same field, with respective bases BU and
BV . Then a spanning set for U ⊗ V is the set S = {u⊗ v : u ∈ BU ,v ∈ BV } of pure tensors
constructed from an element of BU and an element of BV .
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Proof. If u ∈ U and v ∈ V are two tensors that can be expanded as u = a1u1 +
· · · + amum and v = b1v1 + · · · + bnvn, then the pure tensor u ⊗ v can be expanded
as
∑m

i=1

∑n
j=1 ambnui ⊗ v, which is a linear combination of elements in S. Every ele-

ment in U ⊗ V is also a finite linear combination of pure tensors and, therefore, a finite
linear combination of elements of S.

It’s natural to believe that our set S should be linearly independent, as well. It
turns out that S is, in fact, linearly independent, but this is harder to prove than you
might think with our tools so far. We would have to prove that no possible sequence
of our four allowable tensor operations could turn one of its elements into another. In-
stead, we’ll prove that S is linearly independent as a corollary of an important theorem
characterizing the tensor product that gives a close relationship between tensors and
bilinear maps.

You may have noticed a suspicious resemblance between our rules for manipulat-
ing tensors and the axioms defining bilinear maps:

• The tensor manipulation rules (ku⊗v) = u⊗ (kv) = k(u⊗v) = u looks a lot like
the axioms f(ku,v) = f(u, kv) = k(u,v) for bilinear maps f : U × V → W .

• The rules (u1 + u2) ⊗ v = u1 ⊗ v + u2 ⊗ v and u ⊗ (v1 + v2) = u ⊗ v1 + u ⊗ v2

look a lot like the axioms f(u1 + u2,v) = f(u1,v) + f(u2,v) and

In other words, operations on components of the pure tensors in a sum change the
tensor’s value in the same way that operations on the arguments of a bilinear function
change the value of the function. (Also note that the map (u,v) 7→ u ⊗ v from U × V
to U ⊗ V is itself bilinear.)

We can formalize this observation as a precise property of the tensor product: any
bilinear map on U ×V can be turned into an equivalent linear map on U ⊗V that gives
the same value on the pure tensor u⊗v that the original function gives on the ordered
pair (u,v). This is called a universal property because, it turns out, U ⊗ V is essentially
the only space that satisfies it: any other space with the same property is isomorphic
to U ⊗ V .

Proposition (Universal property of the tensor product). Let U, V,W be vector spaces over
the same field F, and let f : U × V → W be a bilinear map. Then there is exactly one linear
map f̃ : U ⊗ V → W such that f(u,v) = f̃(u⊗w), i.e. that gives the following commutative
diagram with the map ιU⊗V (u,v) = u⊗ v:

U × V

U ⊗ V W

f
ιU⊗V

f̃

Proof. This is an existence-and-uniqueness statement, so we have two tasks: prove that
f̃ exists, and that it is unique.

Uniqueness of f̃ is the easy part. The pure tensors u⊗v are a spanning set of U⊗V ,
and any linear map is determined by its values on a spanning set. So if f̃1(u ⊗ v) =

f̃2(u⊗ v) = f(u,v) for all u ∈ U,v ∈ V , then f̃1 = f̃2 for every input in U ⊗ V .
To prove existence, let X be the free vector space on U ×V , and let XLM , XRM , XLA,

XRA be the subspaces of X defined on page 237. Write Y = XLM +XRM +XLA +XRA,
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and remember that U ⊗ V = X/Y . Let π : X → U ⊗ V be the projection map that takes
every element of X to the coset of Y that contains it.

Remember that the general form for an element of X is c1[u1,v1]+ · · ·+cn[un,vn] for
some variable integer n ≥ 0 and freely chosen ci ∈ F,ui ∈ U,vi ∈ V for all 1 ≤ i ≤ n.
Define the map F : X → W as F (c1[u1,v1] + · · · + cn[un,vn]) = c1f(u1,v1) + · · · +
cnf(un,vn). It’s routine to check that F is linear, and it also satisfies F ([u,v]) = f(u,v).

We further claim that Y ⊆ kerF . To prove this, we’ll prove that each of the four
subspaces XLM , XRM , XLA, XRA is in kerF . Remember that any space that contains
multiple subspaces must also contain their sum, and that to prove that a subspace is in
the kernel of some linear map, it’s enough to prove that every element of a spanning
set of that subspace is in the kernel.

1. XLM ⊆ kerF : remember that XLM is spanned by elements of the form k[u,v] −
[ku,v]. On these elements, F (k[u,v] − [ku,v]) = kf(u,v) − f(ku,v). But this
equals 0W , because f is bilinear (and thus linear in the first argument: i.e. the
partial application map f(·,v) is linear from U to W ).

2. XRM ⊆ kerF : identical argument as for XLM : f is also linear in the second argu-
ment.

3. XLA ⊆ kerF : on a generic element [u1+u2,v]− [u1,v]− [u2,v] of the spanning set
of XLA, we have F ([u1+u2,v]−[u1,v]−[u2,v]) = f(u1+u2,v)−f(u1,v)−f(u2,v),
which must equal zero because f is linear in the first argument.

4. XRA ⊆ kerF : identical argument as for XLA.

So Y ⊆ kerF . By the first isomorphism theorem (page 79), there is some other map
f̃ : U ⊗ V → W such that F = f̃ ◦ π. As π takes [u,v] ∈ X to u⊗ v ∈ U ⊗ V , it follows
that f̃(u⊗ v) = F ([u,v]) = f(u,v).

Applications

The power of the universal property of the tensor product is out of proportion to how
easy it is to prove: clever use of it lets us prove results about tensor spaces that bypass
tensor manipulation. We’ll present two fundamental results here; the second will let
us show that our spanning set S for U ⊗ V is, in fact, linearly independent (and thus a
basis of U ⊗ V ).

Proposition (Pure tensors are zero if and only if one component is zero). .
Let U, V be two vector spaces over the same field, and let u ∈ U,v ∈ V be arbitrary. Then

u⊗ v = 0U⊗V if and only if u = 0U or v = 0V .

Proof. We’ve already proved that if u = 0U or v = 0V , then u ⊗ v = 0U⊗V . So we just
need to show the converse result: if both u and v are nonzero, then so is u⊗ v.

In the statement of the previous proposition, let W be the free vector space on U×V ,
and define f : U × V → W as follows:

1. Decompose u and v into linear combinations from BU and BV as u = a1u1+ · · ·+
amum and v = b1v1 + · · · + bnvn, where the coefficients ai, bj are all nonzero. (If
either u = 0U or v = 0V , then correspondingly m = 0 or n = 0: BU and BV can
have elements that don’t get used in a particular linear combination.)
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2. Define f(u,v) =
∑m

i=1

∑n
j=1 aibj[ui,vj]: this expression has mn terms, each using

a different ordered pair from U × V . The crucial observation about f is that
f(u,v) is the trivial, zero-term linear combination—that is, the zero element of
W—if and only if either u = 0U or v = 0V .

It’s easy to check that f is bilinear (remember that we’re allowed to combine terms
of the form c[ui,vj] in a free vector space if they use the same ui and vj), and the
universal property guarantees us some unique map f̃ : U⊗V → W such that f(u,v) =
f̃(u⊗ v).

But if u ̸= 0U and v ̸= 0V , then f(u,v) will always have at least one term, so it’s not
the zero element of the free vector space W . And f̃ is linear, so it can’t take 0U⊗V to a
nonzero element of W . But f(u,v) = f̃(u ⊗ v), so u ⊗ v can’t be zero if both u ̸= 0U

and v ̸= 0V .

Proposition (Basis of the tensor space). If BU , BV are the bases of two vector spaces U, V
over the same field, then the set

S := {u⊗ v : u ∈ U,v ∈ V }

is a basis of U ⊗ V .

Proof. We’ve already proved that S spans U ⊗ V , so we only need to prove that it’s
linearly independent. Let F be the base field of U and V and define the map f : U×V →
F as follows:

1. Decompose u and v into linear combinations from BU and BV as u = a1u1+ · · ·+
amum and v = b1v1 + · · ·+ bnvn, as in the previous proposition.

2. Define f(u,v) = a1b1.

The corresponding map f̃ : U⊗V → F satisfies f̃(u1⊗v1) = 1 but f̃(u⊗v) = 0 for all
other elements u⊗v ∈ S. But ker f̃ is a subspace of U ⊗V , so u1⊗v1 cannot be written
as a linear combination of the other elements of S. We can repeat this logic for all other
elements of S to prove that S is linearly independent. (Note that this argument also
works if one or both of U and V is infinite-dimensional.)

Remark. We’ll reuse the core idea of this proof—that is, proving that a set of pure ten-
sors is linearly independent by constructing a map that has a nonzero value only on
one of them—to prove a basis for the symmetric and alternating products, which have
the same relations to the spaces of symmetric and alternating maps that the tensor
space has on the space of all bilinear maps.

Uniqueness

In fact, the tensor product U ⊗ V is essentially the only space that has this universal
property of allowing arbitrary bilinear maps to be factored into unique linear maps:
any other space that also has this property must have the same structure as the tensor
product. What we mean by “same structure” requires careful definition an unavoid-
ably complex theorem statement:
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Theorem (Universal property uniquely defines tensor product). Let U, V, Z be vector
spaces over the same field F, let ιU⊗V : U × V → U ⊗ V be the map (u,v) 7→ u ⊗ v, and let
ιZ : U × V → Z be a bilinear map. Suppose that for every vector space W over F and every
bilinear map f : U ×V → W , there is a unique linear map f̃Z : Z → W such that f = f̃Z ◦ ιZ .

Then there is a unique linear map T : Z → U ⊗W with the following properties:

1. T is bijective.

2. T ◦ ιZ = ιU⊗V (that is, T ◦ ιZ(u,v) = u⊗ v for all u ∈ U,v ∈ V ).

3. For an arbitrary bilinear map f : U × V → W , let f̃U⊗V : U ⊗ V → W be the unique
linear map such that f̃U⊗V ◦ ιU⊗V = f . Then f̃Z = f̃U⊗V ◦ T .

To put this in less formal language: Z has the same structure as U ×V , with ιZ(u,v) being
the equivalent of the pure tensor u⊗v, and T gives a correspondence between the structures of
Z and U ⊗ V that also matches the pure tensor equivalents of Z to the pure tensors of U ⊗ V .
The maps defined in the theorem statement are summarized in this commutative diagram:

Z

U × V U ⊗ V W

f̃Z
T

ιU⊗V

ιZ

f

f̃U⊗V

Proof. Two preliminary observations:

1. The image of ιZ must span Z. Proof: otherwise, for any nontrivial vector space
W , you could define distinct maps f̃Z , f̃

′
Z : Z → W that satisfy f̃ ◦ ιZ = f̃ ′ ◦ ιZ

in the following way: let B be a basis of span im ιZ , let C be a nonempty set of
vectors that extends B to a basis of Z, and define f̃ , f̃ ′ to have equal values to
each other on all of B and arbitrary different values on elements of C. So the map
f : U × V → W could factor into multiple maps f̃ : Z → W , contradicting the
hypothesis that f̃ is uniquely determined.

2. Property 2 of T in the theorem statement implies property 3. Proof: im ιZ spans
Z, so to show that f̃Z = f̃U⊗V ◦ T , it’s enough to show that f̃Z(z) = f̃U⊗V ◦ T (z)
for every element z ∈ im ιZ .

Choose z ∈ im ιZ arbitrary, and let u ∈ U,v ∈ V be such that ιZ(u,v) = z. If
T ◦ ιZ = ιU⊗W , then T (z) = u ⊗ w. By definition, f = f̃Z ◦ ιZ = f̃U⊗V ◦ ιU⊗Z . So
f̃Z(z) and f̃U⊗W (u⊗ v) = f̃U⊗W ◦ T (z) both equal f(u,v) so they also both equal
each other for arbitrary elements of im ιZ , so they are equal on all of Z.

Now we’ll prove that a map T exists. In the theorem statement, choose W = U ⊗ V

and f = ιU⊗V . The (necessarily unique) map f̃U⊗V : U ⊗ V → U ⊗ V such that f̃U⊗V ◦
ιU⊗V = f must be the identity on U ⊗ V , and there’s a map f̃Z : Z → U ⊗ V such that
f = f̃Z ◦ ιZ .

This map f̃Z will be our T . As f = ιU⊗V , we just proved that T satisfies T ◦ιZ = ιU⊗V ,
which is property 2, so T also must satisfy property 3.
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If we choose W = Z and f = ιZ in the theorem statement, then by similar logic,
we’ll get some linear map f̃U⊗V : U ⊗ V → Z such that ιZ = f̃U⊗V ◦ ιU⊗V . Call this map
T ′.

It remains to prove property 1: T is bijective—that is, both surjective and injective.
We’ll prove each of these separately:

1. T is surjective: In general, if f, g, h are any three functions and f = g ◦ h, then
the image of f equals the image of the restricted function g|imh. Restricting a
function’s domain can only make its image smaller, so im f ⊆ im g.

In this case, since T ◦ ιZ = ιU⊗V , so im ιU⊗V ⊆ imT . And im ιU⊗V is the set of pure
tensors, which is a spanning set of U ⊗ V , so if imT includes this spanning set,
then it must be all of U ⊗ V .

2. T is injective: We’ll prove that T ′T is the identity map on Z. Any element of kerT
must also be in kerT ′T , so if kerT ′T = {0Z}, then kerT = {0Z}.

Remember the core properties of T and T ′ are that T ◦ιZ = ιU⊗V and T ′◦ιU⊗V = ιZ .
Let z be any element of im ιZ and choose (u,v) ∈ U × V such that ιZ(u,v) = z.
As T ◦ ιZ = ιU×V , so T (z) = T ◦ ιZ(u,v) = ιU⊗V (u,v) = u ⊗ v. Similarly, since
T ′ ◦ ιU⊗V = ιZ , so T ′ ◦ ιU⊗V (u,v) = T ′(u⊗ v) = ιZ(u,v) = z.

So T ′Tz = z for every z ∈ im ιZ . And im ιZ spans Z, so T ′Tz = z for every z ∈ Z
as well.

To prove that T is unique, note that T must satisfy T (z) = u ⊗ v for any z =
ιZ(u,v) ∈ im ιZ . So if T is uniquely determined on im ιZ , which spans Z, then T is
uniquely determined on all of Z as well.

Answers to key questions.

1. Different choices of a, b, c, d can give equivalent pure tensors (a, b) ⊗ (c, d): for
example, (1, 2)⊗ (30, 40) = (10, 20)⊗ (3, 4), and (a, b)⊗ (0, 0) has the same value
(namely, 0R2⊗R2) no matter what a and b are.

2. The map f satisfies f(e1, e1) = f(e2, e2) = 0 and f(e1, e2) = f(e2, e1) = 0 (where
as always e1 = (1, 0) and e2 = (0, 1) are the standard basis vectors), so f̃ must
satisfy f̃(e1 ⊗ e1) = f̃(e2 ⊗ e2) = 1 and f̃(e1 ⊗ e2) = (̃e1 ⊗ e2) = 0. So a general
form for f̃ is

(̃f)(ae1 ⊗ e1 + be1 ⊗ e2 + ce2 ⊗ e1 + de2 ⊗ e2) = a+ d

(remember that every element of R2 ⊗ R2 has exactly one expression in the form
ae1⊗e1+ be1⊗e2+ ce2⊗e1+de1⊗e2), so ker f̃ ′ is the set of elements in this form
for which d = −a.

8.3 Tensor product of three or more spaces

The tensor product can be defined on an arbitrary number of finite vector spaces (and
even for an infinite number, though this would require more complication than we’ll
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need). The basic procedures are the same: given vector spaces V1, . . . , Vn over the same
field, start with the free group on the set V1 × · · · × Vn of ordered n-tuples with one
element from each space. Then define subspaces to allow factoring out a constant from
any single position in the tuple, or distributing a sum of vectors in one position into a
sum of n-tuples, and take the quotient.

All the results that we proved for a tensor product of two spaces hold for arbitrarily
large products:

1. The pure tensor v1⊗· · ·⊗vn is nonzero if and only if all the vectors v1, . . . ,vn are
nonzero.

2. A basis for the tensor space is given by the pure tensors constructed from taking
one element from a basis of each constituent space. This means that dim(V1 ⊗
· · · ⊗ Vn) = dimV1 · · · dimVn.

3. Any multilinear map V1 × · · · × Vn → W has a unique corresponding linear map
V1 ⊗ · · · ⊗ Vn → W .

4. Any space Z that also allows factoring multilinear maps into linear maps is iso-
morphic to V1 ⊗ · · · ⊗ Vn by a unique isomorphism that maps the image of the
map ιZ : V1 × · · · × Vn → Z to the corresponding pure tensors.

The proofs are all virtually identical to the two-space case, only with uglier nota-
tion, and we won’t provide them here.

8.4 Linear maps as tensors

8.4.1 Preliminary notions

A reminder of notation and some definitions. Here, V and W are vector spaces over
the same field F.

1. Hom(V,W ) is the vector space of linear maps from V to W .

2. The dual space of V , which we’ll denote V ∗, is the space Hom(V,F) (remember that
F is a one-dimensional vector space over itself).

In in section 2.3, we discussed that Hom(V,W ) was a a vector space, and at least
in the case that V and W are finite-dimensional, it has a readily describable basis in
terms of bases of V and W . In particular, if V has basis {v1, . . . ,vm} and W has basis
{w1, . . . ,vn}, then Hom(V,W ) has mn basis vectors.

One specialization: if W is the one-dimensional field F, then Hom(V,F) = V ∗ has a
basis of the maps that take vi to 1 and other basis vectors to zero. We’ll call this map
v∗
i . In this case, V ∗ has dimension m, the same as V .1

1There is not always an obvious isomorphism betwen V and V ∗ if V is finite. One example: R∞,
the set of infinite sequences with a finite number of nonzero entries, has the standard basis vectors
{e1, e2, e3, . . .} as a basis, where ei has an entry of 1 in position i and 0 everywhere else. Each of these has
a corresponding dual element in (R∞)∗; for instance, e∗1 is the map that takes the sequence (a1, a2, a3, . . .)
to a1. But there are other elements of (R∞)∗ that can’t be expressed as a linear combination of the e∗1;
for instance, the map that takes (a1, a2, a3, . . .) to a1 + a2 + a3 + · · · (this is really a finite sum, as the
terms of the sequence ai must become all zeros past a certain point). We would have to write this map
as e∗1 + e∗2 + e∗3 + · · · , but of course we don’t have a concept of infinite sums in standard vector spaces.
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The fact that Hom(V,W ) and V ⊗ W has the same dimension mn = dimV dimW
(at least in the finite-dimensional case) may have struck you. In fact, there’s a way that
we can represent elements of Hom(V,W ) as elements of the tensor space V ∗ ⊗W . This
may seem like another needless brick in a tower of abstraction, but it will actually be
quite useful for getting a number of useful results.

How, exactly, does this representation work? Suppose that f : V → F is some
element of V ∗, and w is some element of W . We can take the tensor f ⊗w ∈ V ∗ ⊗W ,
therefore, to correspond to the map in Hom(V,W ) that takes an input vector v to the
output f(v)w. This means that all the maps representable by pure tensors have images
of dimension 0 (if w = 0W or f = 0W ∗) or 1 (otherwise).

If we have a general linear map T : V → W where W is finite-dimensional, then we
can represent T as a sum of pure tensors in V ∗ ⊗W as follows:

1. Take a basis {w1, . . . ,wn} of W .

2. For each basis vector wi ∈ W , define the coefficient extraction map w∗
i : W → F

as w∗
i (c1w1 + · · ·+ cnwn) = ci. It’s easy to show that this is linear.

3. Represent T as (w∗
1 ◦ T ) ⊗ w1 + · · · + (w∗

n ◦ T ) ⊗ wn, where the maps T ◦ w∗
i go

from V to F (i.e. are elements of V ∗).

This strategy works with slight modification even if V is finite-dimensional but
W is not. In this case, just choose a basis BW of W with a finite subset S whose span
includes the (necessarily finite dimensional) space imT . Relative to this basis, T has the
representation

∑
w∈BW

(w∗T ) ⊗w. This may look like an infinite sum, but it’s actually
a finite one, because w∗T is the zero map from V to 0 (and thus (w∗T ) ⊗w is the zero
tensor) whenever w /∈ S.

8.4.2 Example

If the discussion above seemed a bit intimidatingly abstract, a concrete example might
help. Let’s consider the map T : R2 → R2 with formula T (x, y) = (y, 3x + 4y), with

matrix representation relative to the standard basis
[
0 1
3 4

]
. As always, we’ll use e1, e2 ∈

R2 to denote the standard basis vectors, and e∗1, e
∗
2 ∈ (R2)∗ to denote the corresponding

coefficient extraction functions e∗1(x, y) = x and e∗2(x, y) = y.
How can we represent this map T as an element of (R2)∗⊗R2? One basis for (R2)∗⊗

R2, of course, is the set {e∗1⊗ e1, e
∗
1⊗ e2, e

∗
2⊗ e1, e

∗
2⊗ e2}, so a general form for elements

of (R2)∗ ⊗ R2 would be

ae∗1 ⊗ e1 + be∗1 ⊗ e2 + ce∗2 ⊗ e1 + de∗2 ⊗ e2.

The map that represents any T : R2 → R2 would have the coefficients a, b, c, d chosen
such that

a(e∗1(x, y))e1 + b(e∗1(x, y))e2 + c(e∗2T (x, y))e1 + d(e∗2T (x, y))e2 = T (x, y)

or, more simply,
(ax+ cy, bx+ dy) = (y, 3x+ 4y)

that is, (a, b, c, d) = (0, 3, 1, 4).
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Each of these solutions is a matrix entry: in particular, the coefficient for e∗i ⊗ ej
is the entry in position (j, i) of the matrix. This correspondence between entries of a
matrix representation and coefficients on the pure tensors of a tensor representation
will be very useful later.

8.4.3 Basis-independence of tensor representations of maps

Even though we used an explicit basis of W to define representations of elements of
Hom(V,W ) in V ∗ ⊗ W , the resulting representation is independent of the basis. If we
choose a different basis, we will get a sum of a different set of pure tensors, but this
sum is guaranteed to equal the same actual element of V ∗ ⊗ W as the original sum.
If both V and W are finite-dimensional, you can prove this purely from dimensional
considerations: every sum of pure tensors in V ∗ ⊗ W can be interpreted as a map in
Hom(V,W ) (that is, the map ι : Hom(V,W ) → V ∗ ⊗ W that takes a map to its tensor
product representation is surjective), and Hom(V,W ) and V ∗ ⊗ W have equal finite
dimension dimV dimW , so no element of Hom(V,W ) can have more than one repre-
sentation in V ∗ ⊗W .

In the infinite-dimensional case, we can slightly generalize this:

Proposition. Let V,W be possibly infinite-dimensional vector spaces over the same field, and
let F be the vector subspace of Hom(V,W ) consisting of all maps with a finite-dimensional
image.2 Then:

1. There is a unique function ι : F → V ∗⊗W with the property that for all T ∈ F , if ιT =∑n
i=1 fi ⊗wi (where f1, . . . , fn ∈ V ∗ and w1, . . . ,wn ∈ W ), then Tv =

∑n
i=1 fi(v)wi

for all v ∈ V .

2. The function ι defined above is linear and bijective.

3. If T ∈ Hom(V,W ) has an infinite-dimensional image, then T is unrepresentable as an
element of V ∗ ⊗ W : there is no element

∑n
i=1 fi ⊗ wi of V ∗ ⊗ W such that Tv =∑n

i=1 fi(v)wi. (That is: we can’t extend ι to a map on any subspace of Hom(V,W ) that
contains elements outside of F .)

Proof. A preliminary note: if BW is a basis of W , then for any element of V ∗ ⊗W , we
can find an equivalent element in which the right-hand sides of every constituent pure
tensor come from BW and no two terms use the same element of BW : write out the
right-hand sides of every original tensor in terms of BW , expand the results and then
collect terms that use the same element of BW , and add their left-hand sides together to
get (at most) one pure tensor with w on the right-hand side for each element w ∈ BW .
Any resulting coefficients can also be subsumed into the left-hand side of each pure
tensor. So we can assume throughout that any two elements x,x′ ∈ V ∗ ⊗ W can be
written simultaneously as x =

∑n
i=1 fi ⊗ wi and x′ =

∑n
i=1 f

′
i ⊗ wi, where w1, . . . ,wn

are distinct elements of an arbitrary basis BW .

2Proof that F is a vector subspace: im(k1T1 + k2T2) ⊆ imT1 + imT2 for any maps T1, T2 and scalars
k1, k2, so if dim imT1 and dim imT2 are finite, then so is dim im(k1T1 + k2T2).
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Proof of statement 1. This is an existence-and-uniqueness statement. We’ve covered
existence in the preceding discussion: for any map element T , choose a basis BW for
W such that some finite subset S spans a space that includes imT , and then choose
ι(T ) =

∑n
i=1(w

∗
iT ) ⊗ wi where w1, . . . ,wn ∈ S, and the dual element w∗

i extracts the
coefficient of wi when a vector is written in the basis BW .

To see that ι is unique, suppose that
∑n

i=1 fi ⊗ wi and
∑n

i=1 f
′
i ⊗ wi = 0 are two

possible values of ι(T ) for some map T : that is, they both satisfy
∑n

i=1 fi(v)wi =∑n
i=1 f

′
i(v)wi = Tv for all v ∈ V (and where, again, w1, . . . ,vn are distinct elements

of some basis of W ). Then if we subtract these two representations define gi := fi − f ′
i ,

then
∑n

i=1 gi(v)wi = Tv− Tv = 0W (that is,
∑n

i=1 gi ⊗wi is a representation of the zero
map). But this is only possible if the maps g1, . . . , gn are all uniformly zero (i.e. fi = f ′

i):
if gi(v) ̸= 0, then

∑n
i=1 gi(v)wi would have a nonzero coefficient on wi and thus could

not be 0W , because w1, . . . ,wn are linearly independent.

Proof of statement 2. This statement is really three sub-statements:

1. ι is linear: straightforward. If ι(T1) = x1 =
∑n

i=1 fi⊗wi and ι(T2) = x2 =
∑n

i=1 f
′
i⊗

wi, then k1x1 + k2x2 =
∑n

i=1(k1fi + k2f
′
i)⊗wi satisfies the necessary property for

ι(k1T1 + k2T2).

2. ι is injective: the zero element of V ∗⊗W is
∑n

i=1 fi⊗wi where all the maps fi are the
zero map; and this could only represent the map that takes v to

∑n
i=1 fi(v)wi =∑n

i=1 0wi = 0W . So if T ̸= 0Hom(V,W ), then ι(T ) ̸= 0V ∗⊗W .

3. ι is surjective: every tensor
∑n

i=1 fi ⊗ wi is the image under ι of some element
T ∈ F , namely Tv = fi(v)wi.

Proof of statement 3. If
∑n

i=1 fi ⊗ wi represents some map Tv =
∑n

i=1 fi(v)wi, then
imT ⊆ span{w1, . . . ,wn}. So if imT doesn’t have a finite spanning set, then we would
need an infinite sum of pure tensors to represent it, but we don’t have infinite sums in
vector spaces.

8.5 The trace

If V is finite-dimensional with basis {v1, . . . ,vn}, then the space End(V ) = Hom(V, V )
of operators on V can be represented in V ∗⊗V with a basis v∗

i ⊗vj , where v∗
i is the co-

ordinate extraction function defined previously. We can further define an “evaluation
map” E : V ∗⊗V → k that just applies the element of V ∗ on the left of every pure tensor
to the element of V on the right: that is, E(

∑k
i=1 fi ⊗ vi) =

∑k
i=1 fi(vi). The values of E

on the basis of V ∗ ⊗ V constructed from a basis of V and its corresponding coordinate
extraction functions are

E(v∗
i ⊗ vj) = v∗

i (vj) =

{
1 i = j

0 i ̸= j
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We can interpret the action of E ◦ ι in matrix terms. Suppose that T ∈ End(V ) has a
matrix representation A = (aij): that is, if v = c1v1 + · · ·+ cnvn, then

T (c1v1 + · · ·+ cnvn) = (a11c1 + · · ·+ a1ncn)v1 + · · ·+ (an1c1 + · · ·+ anncn)vn

=
n∑

i=1

n∑
j=1

aijv
∗
j (v)vi. (ci = v∗

i (v))

Then T has a tensor representation

ι(T ) =
n∑

j=1

n∑
i=1

aijv
∗
j ⊗ vi

and if we apply E to this map, then it extracts adds the coefficients of terms v∗
j ⊗ vi for

which i = j and ignores the rest, so

E ◦ ι(T ) = a11 + · · ·+ ann.

But the map ι is independent of basis, so this value has to be the same no matter what
basis v1, . . . ,vn we used to get the matrix representation A of our original operator T .
So we just proved an important result that would have been far more cumbersome to
get with matrix algebra:

Proposition. All similar matrices have the same sum of diagonal entries.

Proof. Just given.

The sum of the elements on the diagonal of a square matrix is called the trace and
denoted with the abbreviation tr. Since every square matrix in C is also similar to
a matrix in Jordan normal form, and the diagonal entries of a matrix in JNF are its
eigenvalues (counted up to multiplicity), we have this result:

Proposition. The trace of a matrix A equals the sum of its eigenvalues counted up to multi-
plicity: if A has eigenvalues λ1, . . . , λk and the corresponding maximal generalized eigenspaces
have dimensions d1, . . . , dk, then trA = d1λ1 + · · ·+ dkλk.

Proof. Just given.

There’s one other core result on traces that, this time, is easier to get just by working
with matrices.

Proposition. Suppose A and B are matrices of respective dimensions m×n and n×m. Then
tr(AB) = tr(BA). (Note that AB and BA may have different dimensions, but they are always
both square.)

Proof. Write A = (aij) and B = (bij). The ith diagonal entry of AB is
∑n

j=1 aijbji, so the
sum of all diagonal entries is

∑m
i=1

∑n
j=1 aijbji. Likewise, the sum of the jth diagonal

entry of BA is
∑m

i=1 bjiaij , and the sum of all diagonal entries is
∑n

j=1

∑m
i=1 bjiaij . These

sums are clearly equal.
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Remark. This result generalizes to products three or more matrices, but not quite as far
as you might expect. You can rearrange the terms in a matrix product cyclically while
preserving the trace: for instance, tr(ABCD) = tr(A(BCD)) = tr(BCDA), and like-
wise tr(BCDA) = tr(CDAB) = tr(DABC). But non-cyclic rearrangements won’t gen-
erally preserve the trace: in general, for instance, tr(ABCD) ̸= tr(CBDA). The reason
for this is that unlike determinants—where the rule det(AB) = detA detB allows you
to break the determinant of a matrix product completely down into the determinants
of the individual entries, which are field elements whose products all commute—in
general tr(AB) ̸= trA trB.

8.6 Symmetric and alternating tensors

8.6.1 Defined

Some new shorthand notation: to express the tensor product of n copies of V (that is,
V ⊗ · · · ⊗ V︸ ︷︷ ︸

n times

), we’ll write
⊗n V .

You may recall from section 5.3 that there are two important subspaces of the set
Multilin(V n,W ) of multilinear maps that take all their inputs from the same vector
space. These are symmetric maps (in which swapping any two entries preserves the
value) and alternating maps (that take value 0W whenever two of their arguments are
equal and, therefore, flip the sign of their value whenever two arguments are inter-
changed).

We can ask the same question about alternating and symmetric maps that moti-
vated our construction of the tensor product for multilinear maps: is there a space that
we can build from V that produces a unique linear representation of an alternating or
symmetric map on V n? There are fewer alternating and symmetric maps than there
are multilinear maps, so you might expect that the required spaces are smaller.

In fact, there is: these spaces, called the alternating product and symmetric product, are
quotients of the tensor product. The idea behind the construction of these spaces from
the tensor product is similar to the idea behind the construction of the tensor product
itself from the free vector space on V n: choose some operations that you want to be able
to do on tensors that correspond to the defining axioms for alternating or symmetric
maps, define subspaces that include the differences between the tensors that you want
to consider equivalent, and take the quotient of the tensor space by the subspace.

Specifically, define the following subspaces:

1. XS is the subspace of
⊗n V spanned by the differences between pairs of pure

tensors that have the same components in different orders: that is, v1⊗· · ·⊗vn−
vσ(1) ⊗ · · · ⊗ vσ(n) for all vectors v1, . . . ,vn ∈ V and permutations σ ∈ Sn.

(It’s possible and relatively straightforward to prove that this space has an even
smaller spanning set: the set of differences between pure tensors in which the
positions of two components in the first pure tensor are swapped. The core ob-
servation is that every permutation is a composition of transpositions.)

2. XA is the subspace spanned by all pure tensors with at least two equal compo-
nents. For instance, for n = 3 again, XA is the span of the set of elements of the
form v ⊗ x⊗ x, x⊗ v ⊗ x, or x⊗ x⊗ v.
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We can then define the symmetric product3 ⊙n V = (
⊗n V ) /XS and the alternating

product
∧n V = (

⊗n V ) /XA.
The elements of the symmetric product

⊙n V are linear combinations of pure sym-
metric tensors of the form v1 ⊙ · · · ⊙ vn and, likewise, elements of the alternating prod-
uct

∧n V are linear combinations of pure alternating tensors that we’ll write in the form
v1 ∧ · · · ∧ vn. To be more precise, v1 ⊙ · · · ⊙ vn represents the coset of XS that con-
tains v1 ⊗ · · · ⊗ vn, and more generally, some linear combination of symmetric tensors
c1(v

(1)
1 ⊙ · · · ⊙ v1

n) + · · · + ck(v
(k)
1 ⊙ · · · ⊙ v

(k)
n ) represents the coset of XS that contains

c1(v
(1)
1 ⊗· · ·⊗v1

n)+· · ·+ck(v
(k)
1 ⊗· · ·⊗v

(k)
n ). The analogous statement for pure alternating

tensors and XA is also true.
These constructions mean:

1. Constituent vectors of pure symmetric tensors in
⊙n V may be freely rearranged

without changing the value: that is, v1 ⊙ · · · ⊙ vn = vσ(1) ⊙ · · · ⊙ vσ(n) for any
permutation σ ∈ Sn, because v1 ⊗ · · · ⊗ vn and vσ(1) ⊗ · · · ⊗ vσ(n) are in the same
coset of XS . All the other operations possible in a tensor product remain allowed
in a symmetric product: for instance, coefficients on a symmetric tensor can be
merged into one of the components, and vector sums in one component of a
symmetric tensor can be distributed into sums of multiple tensors.

2. Pure alternating tensors with two identical components can be eliminated from
any sum, and (as a consequence) the components of any alternating tensor can
be permuted arbitrarily with a sign flip if the permutation is odd: v1 ∧ · · · ∧ vn =
sgn(σ)vσ(1) ∧ · · · ∧ vσ(n).

The inference from “alternating tensors with two identical components are zero”
to “elements of alternating tensors can be permuted with a sign flip if the permu-
tation is odd” is the result of two facts: the map (v1, . . . ,vn) 7→ v1 ∧ · · · ∧ vn) is
an alternating multilinear map from V n to

∧n V , and alternating maps are skew-
symmetric (as we proved on page 169). You can also see this by expanding the
right-hand side of identities such as 0∧n V = (v1 + v2) ∧ (v1 + v2) ∧ v3 ∧ · · · ∧ vn

to note that reversing two components of an alternating tensor flips the sign.

Careful readers may have noticed one slight problem with the above discussion:
we have defined c1(v

(1)
1 ⊙ · · · ⊙ v1

n) + · · · + ck(v
(k)
1 ⊙ · · · ⊙ v

(k)
n ) ∈

⊙n V to be the coset
of XS that contains c1(v

(1)
1 ⊗ · · · ⊗ v1

n) + · · · + ck(v
(k)
1 ⊗ · · · ⊗ v

(k)
n ) ∈

⊗n V . But, of
course, elements of

⊗n V do not necessarily have unique representations: there are
many ways to write any element of

⊗n V as a sum of pure tensors. How can we be
sure that all of these representations, when we replace the ⊗ symbols with ⊙, give
different representations of the same coset of XS? (The same questions, of course, are
valid for

∧n V as well as
⊙n V .)

The answer is to remember that any valid manipulations to tensor expressions in⊗n V remain valid in
⊙n V and

∧n V ; the latter two spaces simply add new manipula-
tions (that is: freely rearranging symmetric tensor constituents in

⊙n V , and removing
tensors with duplicate constituents and rearranging constituents with a possible sign

3There’s no universal notation for the symmetric product: you may also see the notation Symn V for
this in some other books. The notation

∧n
V for the alternating product, though, is relatively standard

(though you may also see the term exterior product instead, relating to a particular use of alternating
products in calculus on manifolds).
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flip in
∧n V ). This means that if any two expressions with ordinary tensors are equiv-

alent in
⊗n V (i.e. one expression can be turned into another with a sequence of valid

tensor operations), then the same sequence of operations converts between these ex-
pressions when the ⊗ operator replaced by ⊙ or ∧ are also equivalent in

⊙n V and∧n V . This means that the projection maps from
⊗n V to

⊙n V and
∧n V given by

v1 ⊗ · · · ⊗ vn 7→ v1 ⊙ · · · ⊙ vn are in fact well-defined maps.

8.6.2 Universal properties

The worth of the tensor product came from its ability to turn multilinear functions on
U × V to linear functions on U ⊗ V . The symmetric and alternating products have
similar properties that shouldn’t be too surprising: rather than giving linear equiv-
alents of all multilinear functions, they give us linear equivalents only of symmetric
and alternating functions.

We’ll sketch out a proof for this result:

Proposition (Universal properties of symmetric and alternating products). Let f : V n →
W be a multilinear function. Then:

1. If f is symmetric, then there is a unique linear map f̃ :
⊙n V → W such that f(v1, · · · ,vn) =

f̃(v1 ⊙ · · · ⊙ vn) for all v1, . . . ,vn ∈ V .

2. If f is alternating, then there is a unique linear map f̃ :
∧n V → W such that f(v1, . . . ,vn) =

f̃(v1 ∧ · · · ∧ vn for all v1, . . . ,vn ∈ V .

Proof. The proofs of these two statements are quite similar to each other, as well as to
our technique for proving the universal property of the tensor product; we’ll provide
a slightly abbreviated proof sketch here.

The basic steps for proving the theorem statement are:

1. Given the multilinear function f : V n → W , let f ′ :
⊗n V → W be the (necessarily

unique) linear function that satisfies f ′(v1 ⊗ · · · ⊗ vn) = f(v1, . . . ,vn).

2. If f is symmetrical and x is an element of the spanning set of XS (that is, x =
v1⊗· · ·⊗vn−vσ(1)⊗· · ·⊗vσ(n)), then f ′(x) = f(v1, . . . ,vn)−f(vσ(1), . . . ,vσ(n) = 0V .
Thus, f ′(x) = 0W for any element x ∈ XS .

Similarly, if f is alternating, then f ′(x) = 0W whenever x ∈ XA.

3. Let πS :
⊗n V →

⊕n V and πA :
⊗n V →

∧n V be the projection maps defined on
pure tensors as πS(v1⊗· · ·⊗vn) = v1⊙· · ·⊙vn and πA(v1⊗· · ·⊗vn) = v1∧· · ·∧vn.
(We’ve just discussed why these are well-defined maps that have the same values
no matter what form their inputs in

⊗n V are written in.) Then XS = ker πS and
XA = kerπA.

So if f is symmetric, then XS ⊆ ker f ′, and the first isomorphism theorem guar-
antees the existence of a unique linear map f̃ :

⊙n V → W such that f ′ = f̃ ◦ πS .
Similarly, if f is alternating, then XS ⊆ ker f ′, and there’s a unique linear map
f̃ :
∧n V → W such that f ′ = F̃ ◦ πA. In either case, this map f̃ has the properties

required in the theorem statement.
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It’s also possible to prove (though we won’t prove it here) that these universal prop-
erties uniquely determine the alternating and symmetric products in the same way as
with the universal property: if there’s some other space Z with a multilinear symmet-
ric (or alternating) map ι : V n → Z such that any symmetric (or alternating) map
f : V n → W can be written as f = f̃ ◦ ι where f̃ : Z → W is a unique linear map,
then there’s some linear bijection from Z to

⊙n V or
∧n V that also takes vectors in the

image of ι to the corresponding pure symmetric or alternating tensors.

8.6.3 Bases of symmetric and alternating products

It should be relatively intuitive that if B is a basis of V , then the sets {v1 ⊙ · · · ⊙ vn :
v1, . . . ,vn ∈ V } and {v1 ∧ · · · ∧ vn : v1, . . . ,vn ∈ B} are spanning sets of

⊙n V and∧n V —after all, these sets are images under the projection maps πS and πA of sets of
pure tensors that span

⊗n V . These sets, though, aren’t linearly independent: they in-
clude tensors with duplicate elements (which are zero in the alternating product), and
tensors that have the same components as each other in different orders (which equal
each other in the symmetric product and are each other’s negatives in the alternating
product).

We can eliminate these redundancies in the following way. Impose an arbitrary
total order on the elements of B: that is, a relation4 that we’ll denote with the sign ≤
that satisfies the following axioms:

1. Totality: for any two vectors v1,v2 ∈ B, either v1 ≤ v2 or v2 ≤ v1.

2. Antisymmetry: if v1 ≤ v2 and v2 ≤ v1, then v1 = v2.

3. Transitivity: if v1 ≤ v2 and v2 ≤ v3, then v1 ≤ v3.

There’s a finding in set theory, which we won’t get into here, that establishes that
we can always find a total order for any set. (This relation ≤ doesn’t have to correspond
to any useful properties of a vector: it’s purely notional.) This relation ≤ gives another
relation <, defined, naturally enough, as v1 < v2 if v1 ≤ v2 and v1 ̸= v2.

Now define the following sets:

1. BS = {v1 ⊙ · · · ⊙ vn : v1, . . . ,vn ∈ B,v1 ≤ · · · ≤ vn} is the set of pure symmetric
tensors constructed from elements of B in non-strictly ascending order. Every pure
symmetric tensor constructed from elements of B can be made into exactly one
equal element of BS by sorting its elements with respect to our arbitrary relation
≤.

2. BA = {v1 ∧ · · · ∧ vn : v1, . . . ,vn ∈ B,v1 < · · · < vn} is the set of pure alternating
tensors constructed from elements of B in strictly ascending order. Every pure
alternating tensor constructed from elements of B either has two equal elements
(and thus equals 0), or it can be made into exactly one element of BA by sorting
its elements (which keeps the tensor the same if sorting the elements is an even
permutation, or flips the sign if sorting the elements is an odd permutation).

4See section 1.12 if you need a reminder of what “relation” means.



254 CHAPTER 8. TENSOR PRODUCTS

In either case, BS and BA are spanning sets of
⊙n V and

∧n V . It’s natural to suspect
that these sets should be linearly independent as well. Our strategy for proving that
they are alternating sets will be similar to our argument on page 242: construct a map
that has a nonzero value on exactly one of the pure tensors.

The case for alternating tensors is a bit easier. First, we’ll need a couple of prelimi-
nary results.

Proposition. Let f : V n → W be a multilinear map, let σ ∈ Sn be a permutation of {1, . . . , n}
and let fσ : V n → W be the map

fσ(v1, . . . ,vn) = f(vσ(1), . . . ,vσ(n)).

Then fσ is also multilinear.

Proof. The restricted map formed by holding all arguments to fσ constant except the
argument in position i is the same as the restricted map formed by holding all argu-
ments to f constant except the argument in position σ−1(i). Since the restricted maps
from f are all linear, the restricted maps from fσ must all be linear as well.

Proposition. Suppose f : V n → W is any multilinear map over an arbitrary field. Define the
antisymmetrization

fA(v1, . . . ,vn) =
∑
σ∈Sn

sgn(σ)f(vσ(1), . . . ,vσ(n)).

Then fA : V n → W is an alternating multilinear map.

Proof. fA is multilinear because it’s a sum of maps that (by the previous proposi-
tion) are also all multilinear. To see that it’s alternating, note that vi = vj , then
f(vσ(1), . . . ,vσ(n)) = f(vτ◦σ(1), . . . ,vτ◦σ(n) where τ is the transposition of i and j, so
we can divide the right-hand sum in the definition of fA into a sum over even per-
mutations σ and odd permutations τ ◦ σ, where each function value occurs twice with
opposite signs attached. So the whole sum must equal zero.

Proposition. Let B be a basis of a vector space V over a field F, and let u1, . . . ,un be dis-
tinct elements of B. Then there is an alternating multilinear map f : V n → F such that
f(u1, . . . ,un) = 1 and f(v1, . . . ,vn) = 0 for any other elements v1, . . . ,vn ∈ B that are not
a rearrangement of u1, . . . ,un.

Proof. Let f ′ : V n → W be the multilinear (but not alternating) map where the value
of f ′(v1, . . . ,vn) is given as follows: write the inputs as (necessarily unique) linear
combinations drawn from B, and then multiply the coefficient of ui in the expression
for vi for all indices 1 ≤ i ≤ n. The only nonzero value of this map on arguments
drawn from B is f ′(u1, . . . ,un) = 1.

Let f be the antisymmetrization of f ′ as defined in the last proposition. We know
that f is alternating. Furthermore, if v1, . . . ,vn are elements of B but not a rearrange-
ment of u1, . . . ,un, then either two of the vectors vi are equal, or one of the vectors vi

does not equal any of u1, . . . ,un. In either case, f ′(vσ(1), . . . ,vσ(n)) = 0 for all permuta-
tions σ, so f(v1, . . . ,vn) = 0.
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Corollary. Let V be an arbitrary vector space on a field F, let B be a basis of V with an arbitrary
total order imposed on its elements, and let BA ⊂

∧n V be the set of n-component alternating
tensors with components drawn from B in strictly ascending order. Then for every element of
BA, there is a map from V to F whose value on that tensor is 1 and whose value on every other
element of BA is 0.

Proof. For any alternating tensor u1∧· · ·∧un, this map is the
∧n V → F that corresponds

to the alternating map V n → F constructed in the previous proposition.

Corollary. BA, as defined in the previous corollary, is a basis of
∧n V .

There’s a slight difficulty, though, if we use the same argument for symmetric ten-
sors. One natural approach would be to define, for any multilinear map f : V n → W ,
a symmetrization

fS(v1, . . . ,vn) =
∑
σ∈Sn

f(vσ(1), . . . ,vσ(n)).

This almost works. If f is the multilinear map from V n to F that satisfies f(u1, . . . ,un) =
1 and f(v1, . . . ,vn) = 0 for any other elements v1, . . . ,vn ∈ B (including if v1, . . . ,vn

are just u1, . . . ,un reordered), then fS is indeed a symmetric multilinear map, and
value is zero on any set of inputs drawn from B that are not some rearrangement
of u1, . . . ,un. The problem, however, is that in certain base fields, fS(u1, . . . ,un) = 0 as
well.

The problem arises, specifically, with fields with nonzero characteristic: that is, if
there’s some integer k such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸

k times

= 0. (We first discussed fields with

nonzero characteristic way back in section 1.3.3, giving the example of a field with two
elements.) As an example, suppose u1,u2 are two elements of our basis B of V , and we
want to construct a symmetric map fS : V 3 → F such that fS(u1,u1,u2) = 1 and f has
value zero on all other inputs drawn from B, that don’t use u1 as an input twice and u2

as an input once. We already have a function f : V 3 → F such that f(u1,u1,u2) = 1 and
f = 0 on all other inputs drawn from B, including other rearrangements of {u1,u1,u2}.

What happens if we use our putative formula for fS? There are 3! = 6 permutations
on three elements, but there are actually only three ways to rearrange three inputs to
f when two of them are identical, so the sum in the formula for fS involves many
duplicate terms. In particular, the two permutations σ such that σ(3) = 1 (namely the
transposition (1 3) and the cycle (1 2 3)) give the same inputs to (and thus value of) f ,
as do the two permutations for which σ(3) = 2 (namely the transposition (2 3) and the
cycle (1 3 2)) and the two for which σ(3) = 3 (namely the identity and the transposition
(1, 2)). Therefore:

fS(u1,u1,u2) = 2f(u2,u1,u1) + 2f(u1,u2,u1) + 2f(u1,u1,u2)

= 2f(u1,u1,u2)

where the symbol 2 in a generic field means 1+ 1. But in a field of characteristic 2 (that
is, where 1 + 1 = 0), then fS(u1,u1,u2) = 0.

In general, if a function has distinct inputs u1, . . . ,uk occurring a1, . . . , ak times each,
then every distinct way of arranging the inputs is given by a1! · · · ak! different permu-
tations (because there are a1! ways of simply shuffling the u1 inputs around without
touching the others, then a2! independent ways of shuffling the u2 inputs around, and
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so on), so fS as we’ve defined it above will be zero in any field whose characteristic
divides a1! · · · ak!.

We can solve this difficulty by simply taking the sum over fewer permutations, to
eliminate the coefficient a1! · · · ak!. The following proposition shows how to do this:

Proposition. Let V be a vector space over an arbitrary field F, let B be a basis of V , and let
u1, . . . ,un be not necessarily distinct elements of B. Then there is a symmetric multilinear
function f : V n → F such that f(u1, . . . ,un) = 0.

Proof. Let f ′ : V n → F be the multilinear function such that f ′(u1, . . . ,un) = 1 and
f ′(v1, . . . ,vn) = 0 for any other inputs drawn from B (including reorderings of u1, . . . ,un).
Define the equivalence relation σ ∼ τ on Sn to be true if uσ(i) = uτ(i) for all integers
1 ≤ i ≤ n (it’s easy to check that this is in fact an equivalence relation).

Every equivalence class, therefore, contains all the permutations that produce a
particular rearrangement of u1, . . . ,un when different vectors with equal value are in-
distinguishable. (For instance, if u1 = · · · = un, then every permutation is equivalent
to every other; and if u1, . . . ,un are all different, then there’s one equivalence class con-
taining every permutation.) Let R ⊆ Sn be a set containing one arbitrary representative
element from every equivalence class, and define

f(v1, . . . ,vn) =
∑
σ∈R

f ′(vσ(1), . . . ,vσ(n)).

If v1, . . . ,vn is a rearrangement of u1, . . . ,un, then the sum on the right contains
exactly one term with value 1 (namely, the term for the permutation σ ∈ R such that
vσ(i) = ui for all indices 1 ≤ i ≤ n). Otherwise, f is a sum over values of f ′ that all
evaluate to 0.

Therefore, f is a multilinear function, and it is symmetric on values of B: that is, if
v1, . . . ,vn ∈ B, then f(v1, . . . ,vn) = f(vσ(1), . . . ,vσ(n)) for all permutations σ ∈ Sn, not
just those that are in R. So the map F (v1, . . . ,vn) := f(v1, . . . ,vn)−f(vσ(1), . . . ,vσ(n)) is
a multilinear map (remember from page 254 that the map generated from a multilinear
map by arbitrarily permuting its arguments is also multilinear, and the difference of
two multilinear maps is also multilinear), and its values on the basis B of V are all
zero.

Therefore, F is the zero map: that is, f(v1, . . . ,vn) = f(vσ(1), . . . ,vσ(n) for all vectors
v1, . . . ,vn in V , not just in B. So f is symmetric.

Corollary. Let V be a vector space over a field F, let B be a basis of V with an arbitrary total
order, and let BS be the set of pure symmetric tensors v1 ⊙ · · · ⊙ vn with n components drawn
from B in non-strictly ascending order. Then for every element of BS , there is a linear map
from

⊙n V to F with value 1 on that element and 0 on every other.

Proof. This map is the factoring through
⊙n V of the symmetric map f : V n → F

constructed in the last proposition.

Corollary. BS as defined in the last proposition is linearly independent, and thus a basis of⊙n V .
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