
Preface

David Griffiths’ book Introduction to Quantum Mechanics is perhaps the most widely
used book on its subject, and manages to be accessible and conversational without ex-
cessive simplification. Still, many readers—especially those who can handle a slightly
higher level of mathematical abstraction simplifies many of the book’s derivations, and
who are studying independently with limited help from professors—will be helped by
a study guide.

In writing this commentary, I had three principal goals:

1. Provide summaries of the main findings of each section that can be consulted
without wading through Griffiths’ long derivations. In these sections, I often pro-
vide abbreviated versions of Griffiths’ derivations, leaving out straightforward
algebraic manipulations. The summary should be enough for you to reconstruct
the original argument.

2. Use abstract results from linear algebra and operator theory to give shorter and
more memorable derivations of some key results, especially those in the first two
chapters, as Griffiths defers introducing many parts of the linear algebra formal-
ism until Chapter 3.

3. Clarify a handful of points at which Griffiths makes a leap of logic that may not
be obvious.

The result is intended as a companion, not a substitute, for Griffiths’ book, and
should be read alongside it. Perhaps the best method is to read one section in the
original, then one section in the guide; though if a section in Griffiths is confusing
upon first reading, the guide may help you to get unstuck.

The opening Chapter 0 presents the core elements of the mathematical formalism
for QM (which are worth reading in full before beginning the book) as well as a handful
of basic results on inner product spaces and Hermitian operators (which should be a
review; if not, you may find it profitable to study abstract linear algebra first before
trying to apply it to the messier concrete settings of QM).

Section titles and page references correspond to the second edition (2005).
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Chapter 0

Formalism and mathematical
preliminaries

Griffiths defers the discussion of formalism until chapter 3, but if you’ve studied linear
algebra (if you haven’t, you’re well advised to do that first!), seeing the basics first may
help. This discussion is unavoidably a bit vague, but the next chapters will fill more
details in. The advantage of discussing the formalism at the beginning is that we can
start connecting Griffiths’ discussions of specific systems to more general results, as
well as provide generalizations.

0.1 States as elements of complex vector spaces

In QM, the state of a particle or a system can be described as an element of a vector
space over C. Different systems require different vector space models. For instance, the
spin of a spin-1/2 particle such as an electron can be modeled as C2, with e1 = (1, 0)
corresponding to a particle with spin up along the specified axis (for instance, the z-
axis), and e2 = (0, 1) corresponding to a particle with spin down along the same axis.
Other linear combinations, such as 0.8e1 + 0.6e2 or i

2
e1 +

1+
√
2i

2
e2, correspond to other

states, which could have definite spin along some other axis or no definite spin at all.
(For reasons that we’ll see later, a state (k1, k2) = k1e1 + k2e2 only corresponds to an
actual physical state if |k1|2 + |k2|2 = 1.)

The state of a system determines physical properties such as momentum and en-
ergy, but not quite in the same way as in classical mechanics. In classical mechanics,
these properties are continuous: that is, their allowable values are intervals of real
numbers; and they’re determinate: a particle always has an exact position, an exact en-
ergy, and so forth. But in quantum mechanics, these quantities are typically quantized
and probabilistic. If you try to measure a system’s state, you may get, you’ll get one of
a set of possible answers, and the same state won’t always give you the same results.

For instance, if you test the spin of a spin-1/2 particle along the z-axis, you will
get one of two results: either the particle’s full spin points up along the z-axis, or it
points down—you will never find only part of the spin along the z-axis, with another
component in some unmeasured direction. And except for the states represented by
e1 and e2 for particles with definite z-aligned spins, every state could yield spin-up or
spin-down along z, with a larger first component of the state’s vector representation
corresponding to higher probability of spin-up. (In particular, the state (k1, k2) has
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4 CHAPTER 0. FORMALISM AND MATHEMATICAL PRELIMINARIES

probability |k1|2 of being measured spin-up along the z-axis and probability |k2|2 of
being measured spin-down. Probabilities have to add to 1, hence the comment before
that real states need to have |k1|2 + |k2|2 = 1.)

Griffiths starts with a different simple system: a particle, with no relevant proper-
ties other than mass, moving in one dimension. To model this particle’s possible states,
we use (more or less1) the space of of complex-valued functions on R, with vector ad-
dition and scalar multiplication determined point-by-point: the sum of two functions
f and g is the function x 7→ f(x) + g(x), and the scalar product cf for some complex
value c is the function x 7→ cf(x). The function that represents a particular particle
state is called a wavefunction.

Ordinarily, we’ll denote quantum states with symbols between a vertical line on
the left and an angle bracket on the right as in |ϕ⟩ or |1⟩. The whole symbol is called a
ket, and the system of notation is bra-ket notation (or sometimes Dirac notation, the term
that Griffiths prefers).

In Griffiths’ book, a Greek letter in a ket typically mean the state whose wavefunc-
tion also has that letter: |Ψ⟩ is the state with wavefunction Ψ(x).

0.2 Inner products

Vector spaces in quantum mechanics also have a sesquilinear inner product. In linear
algebra, a function S : V 2 → C (where V is a complex vector space) is sesquilinear if it
satisfies the following requirements:

1. If you fix the first argument, then varying the second argument gives a linear
function: S(v, k1w1+k2w2) = k1S(v,w1)+k2S(v,w2) for all vectors v,w1,w2 ∈ V
and k1, k2 ∈ C

2. If you fix the second argument, then varying the first argument gives an antilinear
function: S(k1v1 + k2v2,w) = k∗1S(v1,w) + k∗2S(v2,w), where k∗1 and k∗2 denote
complex conjugates. (This asterisk notation for complex conjugates instead of
k1, k2 is nearly universal in QM.)

Some books in pure mathematics make the first argument linear and the second
antilinear, but antilinearity in the first argument is the convention in QM. To be an
inner product, a sesquilinear form S also has to be positive definite (that is, S(v,v) is a
always a positive real number for all v ̸= 0), and conjuate symmetric (that is, S(v,w)
and S(w,v) are conjugates).

In pure mathematics, the product of two elements on an inner product space is often
denoted as ⟨ψ1, ψ2⟩. In quantum mechanics, the convention is to use a very similar
notation: bra-ket notation or Dirac notation. A state with wavefunction Ψ is denoted |Ψ⟩,
and the inner product of two such states |Ψ1⟩ and |Ψ2⟩ with the notation ⟨Ψ1|Ψ2⟩. The
⟨Ψ1| part is called a bra (that is, the other half of a bra-ket), and it can be treated as its
own mathematical object closely related to, but different from, the state |Ψ1⟩. More on
this later.

1“More or less” because R doesn’t have units of distance attached, but a coordinate system that
represents actual space does. Values of these functions themselves have units as well: as we’ll see
soon, the units of a one-dimensional wave function are (length)−1/2, because the integral of a squared
wavefunction over a distance interval is the probability that the particle is located in that interval, and
probabilities are dimensionless.



0.3. PRODUCT RULE FOR DERIVATIVES OF INNER PRODUCTS 5

So how do we define inner products on QM vector spaces? For finite-dimensional
spaces, the typical definition is a dot product. For instance, in a two-dimensional space
like our spin-1/2 particle example, we might have one state |α⟩ represented as the
vector (a1, a2) ∈ C2, and another state |β⟩ is represented by (b1, b2), then the inner
product of two states |α⟩ = a1 |1⟩+ a2 |2⟩ and |β⟩ = b1 |1⟩+ b2 |2⟩ is just a∗1b1 + a∗2b2.

Wavefunctions, though, are elements of infinite-dimensional function spaces. In-
stead of a sum over a finite number of basis states, we need to use an integral: the
inner product of two wave functions Φ,Ψ as

∫
R
Φ(x)∗Ψ(x) dnx. The normalization re-

quirement for wave functions, note, means that
∫
R
|Ψ(x)|2 dnx = 1.

These inner products have physical interpretations. One of the most important is
the meaning of orthogonal states: that is, those with inner product zero. If ⟨Φ|Ψ⟩ = 0,
then |Φ⟩ and |Ψ⟩ are (to put it vaguely) physically independent: a system that’s actually
in state |Φ⟩ could never be measured to be in state |Ψ⟩.

When we define inner products, we need to make sure that orthogonal states are
in fact physically independent. Otherwise, our mathematical deductions won’t corre-
spond to physical facts. Using spin-+z and spin-−z as a basis for the space of spin-1/2
particle states, for instance, is fine, because a spin-+z particle will never behave as
though it has spin −z. Particles with a definite spin +x, on the other hand, could be-
have as though they had spin −z if they were put through an experiment to measure
magnetic moment along the z-axis, so +x and −z are not physically independent spin
states, and if we constructed a vector space representation of spin-1/2 particles that
made these orthogonal, we would run into trouble.

One final purely mathematical property of inner products is the Schwarz or Cauchy–
Schwarz inequality

| ⟨v,w⟩ |2 ≤ ⟨v,v⟩ ⟨w,w⟩ .
Proof sketch: let z be some complex number such that |z| = 1 and ⟨v, zw⟩ is real (and
thus ⟨v, zw⟩ = ⟨zw,v⟩). Then ⟨v + xzw,v + xzw⟩ is a nonnegative real quantity. Ex-
panding it for real x gives

⟨w,w⟩x2 + 2 ⟨v, zw⟩x+ ⟨v,v⟩ ≥ 0

which is a quadratic inequality that can only hold for all real x if the discriminant
4 ⟨v, zw⟩2 − 4 ⟨v,v⟩ ⟨w,w⟩ is not positive, and | ⟨v, zw⟩ | = |z|| ⟨v,w⟩ |.

0.3 Product rule for derivatives of inner products

The linearity of inner products gives us a “product rule” for the inner product of vec-
tors (or functions) that vary with time: for an infinitesimal increment dt where dt2 can
be neglected,

⟨u(t) + u′(t) dt,v(t) + v′(t) dt⟩ = ⟨u(t),v(t)⟩+ (⟨u(t),v′(t)⟩+ ⟨u′(t),v(t)⟩) dt

so
d

dt
⟨u(t),v(t)⟩ = ⟨u(t),v′(t)⟩+ ⟨u′(t),v(t)⟩ .

0.4 Bras as elements of the dual space

In linear algebra, if V is a vector space over F, then the dual space of V , denoted V ∗, is
Hom(V,F), or the set of linear maps from V to its base field. (For instance, the functions
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f1, f2 : R2 → R defined by f(x1, x2) = 2x1 − 3x2 and f(x1, x2) = 4x1 are both elements
of the dual space of R2.)

In the inner product ⟨Φ|Ψ⟩, we can identify ⟨Φ| as an element of the dual space,
namely the linear map that takes every state |Ψ⟩ to its inner product with |Φ⟩. For
instance, if |Φ⟩ is the state of a particle with the wavefunction f , then ⟨Φ| is the map
from any other wavefunction g to

∫
f(x)∗g(x) dx. This means that ⟨Φ| is an element of

the dual of the space of particle states. According to this formula, if |Φ⟩ = a1 |Ψ1⟩ +
a2 |Ψ2⟩ (which means literally that |Φ⟩’s wavefunction is a1 times |Ψ1⟩’s wavefunction
plus a2 times |Ψ2⟩’s wavefunction), then the corresponding bra ⟨Φ| is a∗1 ⟨Φ1| + a∗2 ⟨Φ2|.
We’ll use this formula a lot.

Finally, elements of dual spaces (including bras) can be added just like any linear
maps: if f, g ∈ V ∗, then f+g is the map that sends every vector v ∈ V to f(v)+g(v) ∈ F.
This lets us expand products of sums of bras and kets: for instance, (⟨a|+⟨b|)(|c⟩+|d⟩) =
⟨a|c⟩+ ⟨a|d⟩+ ⟨b|c⟩+ ⟨b|d⟩.

0.5 Observations as operators

In classical physics, quantities such as energy and the directional components of mo-
mentum are scalars. In quantum mechanics, the analogous quantities are actually
operators on the vector space, which take one wavefunction (or similar) and produce
another wavefunction (or similar) in the same space2 These operators typically have
explicit formulas, so if you have a formula for an input wavefunction, you can (at least
theoretically) produce a formula for the output “energy” or “x-component of momen-
tum” wavefunction.

But how do you get from the output of an operator to a value of the correspond-
ing quantity? The answer is that certain wavefunctions are eigenvectors—in QM, the
more common word is eigenstates–of the corresponding operator, and the eigenvalue
is the value of the physical quantity. That is: applying the operator just multiplies the
original wavefunction by a constant factor, and this factor is the value of the physical
quantity in question.

0.6 Expected values as inner products

For states |ϕ⟩ that aren’t eigenfunctions of an operator Q̂ that measures some quantity
Q (in QM, we usually mark operators with the hat symbol), we can at least calculate a
mean expected value of Q with the formula E(Q) =

〈
ϕ
∣∣∣Q̂∣∣∣ϕ〉. For instance, suppose

Q̂ has orthogonal eigenstates |1⟩ and |2⟩ with eigenvalues Q1 and Q2: that is, ⟨1|1⟩ =

⟨2|2⟩ = 1, ⟨1|2⟩ = ⟨2|1⟩ = 0, and Q̂ |1⟩ = Q1 |1⟩ and Q̂ |2⟩ = Q2 |2⟩. Suppose we have
some hybrid state |ϕ⟩ = c1 |1⟩ + c2 |2⟩ (where for normalization |c1|2 + |c2|2 = 1). Then
⟨ϕ| = c∗1 ⟨1|+ c∗2 ⟨2| and Q̂ |ϕ⟩ = Q̂(c1 |1⟩+ c2 |2⟩) = c1Q̂ |1⟩+ c2Q̂ |2⟩ = c1Q1 |1⟩+ c2Q2 |2⟩.
(Remember: Q̂ is a linear operator!)

So the expected value is
〈
ϕ
∣∣∣Q̂∣∣∣ϕ〉 = (c∗1 ⟨1|+c∗2 ⟨2|)(c1Q1 |1⟩+c2Q2 |2⟩), which we can

expand to c∗1c1Q1 ⟨1|1⟩+c∗1c2Q2 ⟨1|2⟩+c∗2c1Q1 ⟨2|1⟩+c∗2c2Q2 ⟨2|2⟩, and the orthonormality

2Again, ignoring the fact that the input and output may have different units, so you couldn’t techni-
cally add them together the way you could add wavefunctions in a vector space.
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of |1⟩ and |2⟩ simplifies this to |c1|2Q1+|c2|2Q2. So |ϕ⟩’s value ofQ is a weighted average
of the value of Q in the constituent eigenstates |1⟩ and |2⟩, scaled by the contribution
of each eigenstate to the overall state.

0.7 Hermetian and skew-Hermetian operators

Operators that correspond to observable quantities have an additional valuable prop-
erty: they are Hermetian. Remember from linear algebra that a Hermitian matrix (by
definition) one that equals its own conjugate transpose, and that a result called the
spectral theorem guarantees that you can choose an orthogonal basis for the underlying
vector space made up entirely of the eigenvectors of a Hermitian matrix.

In general complex vector spaces V with an inner product ⟨·, ·⟩ : V 2 → C, a Hermi-
tian operator H : V → V is one that satisfies the equation ⟨Hv,w⟩ = ⟨v, Hw⟩.3 You
might alo see the term self-adjoint: more generally, the adjoint of an operator T is the
operator T † that satisfies

〈
T †v,w

〉
= ⟨v, Tw⟩.

The spectral theorem does generalize in a way to infinite-dimensional spaces. In
particular, we have these two important results:

1. Eigenstates of a Hermitian operator are real. Proof: if v is a nonzero eigenstate of H
with eigenvalue λ, then ⟨Hv,v⟩ = ⟨λv,v⟩ = λ∗v and ⟨v, Hv⟩ = ⟨v, λv⟩ = λ ⟨v,v⟩.
So λ = λ∗; that is, λ is real.

2. Eigenstates of a Hermitian operator with different eigenvalues are orthogonal. Proof: if
Hv = λv and Hv = µw (where λ and µ must be real, then ⟨Hv,w⟩ = ⟨λv,w⟩ =
λ ⟨v,w⟩ and ⟨v, Hw⟩ = ⟨v, µw⟩ = µ ⟨v,w⟩. If these are equal, then either λ = µ or
⟨v,w⟩ = 0.

Often it’s more convenient to represent a state as a weighted sum of eigenstates
of a particular operator than to work with raw wavefunctions directly. Eigenstates
of the energy operator, called the Hamiltonian, are especially convenient because they
evolve through time in an especially simple way, and time evolution is another linear
operator: to find how the sum of states changes through time, you can find how all of
the constituent states change and then add the results.

This result will be helpful for determining if an operator is Hermitian.

Proposition. Sums and real multiples of Hermitian operators are all Hermitian, as are the
compositions of commuting Hermitian operators.

Proof. Notation: all operators are defined on some complex vector space V with arbi-
trary elements v,w. Now we’ll address in turn:

1. Sums: Suppose H1, H2 are two operators. Then ⟨(H1 +H2)v,w⟩ = ⟨H1v,w⟩ +
⟨H2v,w⟩ and ⟨v, (H1 +H2)w⟩ = ⟨v, H1w⟩ + ⟨v, H2w⟩. If H1 and H2 are Her-
mitian, then ⟨H1v,w⟩ = ⟨v, H1w⟩ and likewise for H2, so ⟨(H1 +H2)v,w⟩ =
⟨v, (H1 +H2)w⟩, so H1 +H2 is Hermitian.

3To see that the notions of Hermitian matrix and Hermitian operator correspond, note that if a and
b are column vector representations of v,w and M is the Gram matrix of H (all relative to a basis that’s
orthonormal with respect to the inner product), then ⟨v, Hw⟩ = a†(Mb) and ⟨Hv,w⟩ = (Ma)†b =
a†M†b, where the symbol † indicates the conjugate transpose. These quantities are equal for every
possible a,b only if M =M†; that is, if M is Hermitian.
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2. Multiples: Suppose H is a Hermitian operator and c is a real number. Then
⟨(cH)v,w⟩ = c∗ ⟨Hv,w⟩ = c ⟨Hv,w⟩ (because c is real) and ⟨v, (cH)w⟩ = c ⟨v, Hw⟩.
As H is Hermitian, these quantities are equal, so cH is Hermitian.

3. Compositions of commuting operators: Let H1, H2 be Hermitian operators such that
H1H2 = H2H1. Then ⟨(H1H2)v,w⟩ = ⟨H1(H2v),w⟩ = ⟨H2v, H1w⟩ = ⟨v, H2H1w⟩.
So if H1H2 = H2H1, then H1H2 is Hermitian.

Remark. The requirement that H1 and H2 commute is vital! If they don’t, then H1H2 −
H2H1 is a nonzero operator that is guaranteed to be skew-Hermetian (see below for
what this means).

There’s a related notion of skew-Hermitian operators which satisfy ⟨v, Sw⟩ = −⟨Sv,w⟩.
Here are some properties of skew-Hermitian operators; they can all be proved easily
using very similar proof techniques.

1. Sums and real multiples of skew-Hermitian operators are skew-Hermitian.

2. Multiples of Hermitian operators by purely imaginary scalars are skew-Hermitian,
and vice versa.

3. Skew-Hermitian operators have purely imaginary eigenvalues. (Proof: if v is an
eigenvector of the skew-Hermtian operator S with eigenvalue λ, then it’s also an
eigenvector of the Hermitian operator iS with necessarily real eigenvalue iλ.)

4. If A and B commute, then the composition AB = BA is Hermitian if A and B are
both Hermitian or both skew-Hermitian, and it’s skew-Hermitian if one of A and
B is Hermitian and the other is skew-Hermitian.

0.8 Adjoint operators

An operator B : V → V is an adjoint of an operator A on a vector space V with an inner
product ⟨·, ·⟩ if ⟨v, Aw⟩ = ⟨Bv,w⟩ for all v,w ∈ V . (Hermitian operators, as defined
above, are the operators that are adjoints of themselves.)

A few properties of adjoints, which Griffiths implicitly on in a few spots but doesn’t
prove, will come in handy later:

1. If the inner product is nondegenerate—that is, there’s no nonzero vector v such that
⟨v,w⟩ = 0 for all w ∈ V—then the adjoint of an operator is unique.4 Proof: suppose
A has two adjoints B1, B2. Let v be some vector such that B1v ̸= B2v, and define
x = B1v − B2v. Then ⟨v, Aw⟩ = ⟨B1v,w⟩ = ⟨B2v,w⟩ and thus ⟨B1v,w⟩ −
⟨B2v,w⟩ = 0 for all w ∈ V . But by antilinearity of the inner product in the first
argument, ⟨B1v,w⟩ − ⟨B2v,w⟩ = ⟨B1v −B2v,w⟩ = ⟨x,w⟩, so ⟨·, ·⟩ is degenerate.

Every inner product that we work with in QM is nondegenerate, so we’re guar-
anteed uniquely defined adjoints.

4The symmetry properties of inner products guarantee that this condition for nondegeneracy is
equivalent to the condition defined the other way around: there’s no w wuch that ⟨v,w⟩ = 0 for all
v.
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2. If A is an adjoint of B, then B is an adjoint of A. Proof: we have ⟨v, Aw⟩ =
⟨Aw,v⟩∗ and ⟨Bv,w⟩ = ⟨w, Bv⟩∗ for any operators A,B by the symmetry prop-
erties of inner products. So if ⟨v, Aw⟩ = ⟨Bv,w⟩ for arbitrary v,w ∈ V (showing
thatB is an adjoint ofA), then ⟨w, Bv⟩ = ⟨Aw,v⟩ for arbitrary v,w ∈ A (showing
that A is an adjoint of B).

3. If B is an adjoint of A, then the composition AB is Hermitian. Proof: ⟨v, ABw⟩ =
⟨v, A(Bw)⟩ = ⟨Bv, Bw⟩ = ⟨ABv,w⟩.

4. If A1, A2 are operators with adjoints B1, B2, then an adjoint of k1A1 + k2A2 for
scalars k1, k2 is k∗1B1 + k∗2B2.

We use the special dagger notation for adjoints: B = A†.

0.9 Differential equations as linear operators

The set of functions in one or more variables with values in R or C is a vector space
with pointwise addition and multiplication: f + g is the map x 7→ f(x) + g(x) and cf
for constant c is the map x 7→ cf(x). (The same thing can be said for functions with
multiple values.) It also has an inner product defined on it, typically by integration
along the lines of ⟨f, g⟩ =

∫ b

a
f(x)∗g(x) dx.

Two types of expression that often show up in differential equations encountered
in quantum mechanics can be expressed as linear operators on this space, and they are
often (skew-)Hermitian. This fact often simplifies analysis of differential equations:

1. Multiplication by given functions. The map that sends a function f to its pointwise
product with another (possibly constant) given function k(x): that is, the map
f 7→ k(x)f(x). (Why is this linear? It should be pretty clear that k(x)(c1f1(x) +
c2f2(x)) = c1(k(x)f(x)) + c2(k(x)f(x)) for all constants c1, c2 and functions f1, f2.)

With the inner product ⟨f, g⟩ =
∫
I
f(x)∗g(x) dx where I is some interval, this is

Hermitian if k is real-valued: both ⟨kf, g⟩ and ⟨f, kg⟩ equal
∫
I
f ∗(x)k(x)g(x) dx

(presuming either integral converges in the first place).

This operator is also linear (and Hermitian, if k is real-valued) if f and k are
functions of multiple variables. (In this case, the inner product would usually be
defined as a multiple integral.)

2. Differentiation. The differentiation operator
d

dx
is linear:

d

dx
(c1f1(x) + c2f2(x)) =

c1f
′
1(x) + c2f

′
2(x).

If f is defined on the interval [a, b] (we could have a = −∞ or b = ∞), then
the set of functions f that satisfy f(a) = f(b) = 0 (with f(±∞) interpreted as
limx→±∞ f(x) when we have an endpoint at ∞) is a linear subspace of the space of
functions. On this subspace. the differentiation operator is skew-Hermitian. Re-
member that the derivative of the complex conjugate of a complex-valued func-
tion is also the complex conjugate of the derivative, and the product rule

d

dx
f(x)∗g(x) = f(x)∗g′(x) + f ′(x)∗g(x)
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when integrated from x = a to x = b becomes the integration by parts formula

f(b)∗g(b)− f(a)∗g(a) =

∫ b

a

f(x)∗g′(x) dx+

∫ b

a

f ′(x)∗g(x) dx = ⟨f, g′⟩+ ⟨f ′, g⟩ .

If the value of this equation is zero (for instance, because a = −∞, b = ∞, and f

and g asymptotically go to zero), then
d

dx
is skew-Hermitian.

Wave functions representing particle density typically go to zero at each endpoint
of their domain (or if they’re defined over all of space, they go to zero at x = ±∞:
you can’t have a particle spread thickly over all of the universe), so this result is
often useful.

3. Iterated and partial differentiation. As
d

dx
is skew-Hermitian, so ic

d

dx
is Hermitian

for any real value c, and
d2

dx2
, as the composition of

d

dx
with itself (and all opera-

tors commute with themselves), is Hermitian on the subspace of functions f that
satisfy f(a) = f(b) = 0 and f ′(a) = f ′(b) = 0. (Even if f vanishes at a and b,
d

dx
won’t be skew-Hermitian on f ′ if f ′(a) ̸= 0 or f ′(b) ̸= 0, so the result that the

composition of two skew-Hermitian operators is Hermitian isn’t applicable.)

Similar results apply to partial derivatives. In general, the nth derivative operator
is skew-Hermitian if n is odd and Hermitian if n is even when it’s applied to the
space of functions that vanish at a and b along with their first n− 1 derivatives.

To see how this theory, plus some basic results on abstract linear maps, can apply
to differential equations, consider the important differential equation

iℏ
∂

∂t
Ψ(x, t) =

(
− ℏ2

2m

∂2

∂x2
+ V (x)

)
Ψ(x, t)

defined on functions Ψ(x, t) whose values (and all orders of derivatives) go to zero at
x→ ±∞). We can express this as(

iℏ
∂

∂t
+

ℏ2

2m

∂2

∂x2
+ V (x)

)
Ψ(x, t) = 0.

Taking derivatives by t and x, and multiplying by a fixed function V or constant such
as ℏ2

2m
, are all linear operators, so the big expression in parentheses is a linear operator.

We’ve reframed the differential equation as a statement that Ψ is in the kernel of a linear
operator. Kernels are linear subspaces of their enclosing vector space: that is, if Ψ1 and
Ψ2 are differential equations, then so is c1Ψ1 + c2Ψ2 for any constants c1, c2.

Furthermore, it turns out that if initial conditions Ψ(x, 0) for Ψ are given, then Φ(x, t)

is uniquely determined: knowing Ψ(x, 0) uniquely determines the initial value of
∂2Ψ

∂x2

and therefore also of
∂Ψ

∂t
. So if Ψ1(x, t),Ψ2(x, t) have initial conditions ψ1(x) = Ψ1(x, 0)

and ψ2(x) = Ψ2(x, t), then the solution with initial conditions c1ψ1 + c2ψ2 couldn’t be
anything other than c1Ψ1 + c2Ψ2. This means that the time evolution operators that take
an input state ψt=0 at one time to an output state ψt=t0 at some other time are also linear.
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So on functions Ψ(x, t) with limx→±∞ Ψ(x, t) = lim limx→±∞
∂
∂x
Ψ(x, t) = 0, the map

from Ψ to
(
− ℏ2

2m

∂2

∂x2
+ V (x)

)
Ψ(x) is a Hermitian operator. This fact will come in

handy later, letting us prove several properties about this operator using generic results
on Hermitian operators without resorting to making explicit integrals. In fact, there are
several important results that Griffiths derives using clunky integration by parts where

the core insight turns out to be a lightly disguised “
d

dx
is skew-Hermitian”, and if we

remember the general result on
d

dx
, we can derive these results without doing integrals

in a specific setting again.



Chapter 1

The wave function

1.1 The Schrödinger equation

The equation that Griffiths presents as the Schrödinger equation is actually just the
equation for one specific class of systems: a particle moving in a one-dimensional
potential field V . Any interactions between the particle and external forces, such as
between its charge and an external electric field, are encapsulated in V , so the only
property that appears explicitly in the Schrödinger equation is V .

The fully generic form of the Schrödinger equation, which Griffiths doesn’t present
off the bat, is that if the state of a system at time t can be represented by some element
s(t) of a vector space called the state space, then

iℏs′(t) = Ĥs(t)

where s′ denotes a derivative with respect to time, and Ĥ is a particular (and always
Hermitian) operator called the Hamiltonian operator.

As Ĥ has units of energy× time and the units of s′, like any time derivative, are the
units of Ĥ times time−1, it follows that Ĥ must have units of energy. It turns out, in
fact, that if s is an eigenstate of Ĥ , then the eigenvalue is the energy of Ĥ .

s′ could be a vector with a finite number of complex components, as in the spin-1/2
particle example that we discussed in Section 0.1. For the case of particles in one di-
mension, the state space is the set of complex-valued functions of one space coordinate.
If we write Ψ(x, t) to represent this state at any particular time t, then we get

iℏ
∂Ψ(x, t)

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ V (x)Ψ(x, t)

(and its generalizations, which we’ll get to later) is the most important equation in

quantum mechanics. As we discussed in section 0.9, the operatorH = − ℏ
2m

∂2

∂x2
+V (x)

is a Hermitian operator, and we can use this fact to give some proofs of its properties
that, unlike Griffiths’ proofs, don’t require juggling integrals.

Planck’s constant. Griffiths calls ℏ Planck’s constant, but some other books call it the
reduced Planck’s constant in some other books which reserve the term Planck’s constant,
without an adjective, for the quantity h = 2πℏ. Planck’s constant is a fundamental,
experimentally determined constant of the universe, just like the speed of light or the
mass of a proton; there’s no way to derive it from other quantities.

12
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The energy operator in the Schrödinger equation. Both sides of the Schrödinger
equation have units of energy times units of the wavefunction (which, for particles in
one dimension, is length−1/2.

In fact, the right-hand side is actually the energy operator
(
− ℏ2

2m

∂2Ψ

∂x2
+ V

)
applied

to the function Ψ: that is, if Ψ is a wavefunction with some definite energy Ψ, then(
− ℏ2

2m

∂2Ψ

∂x2
+ V

)
E is just the scalar multiple EΨ. The first term − ℏ2

2m

∂2Ψ

∂x2
represents

kinetic energy, and the second term is the potential energy. The potential energy V
could depend on a potential gradient that varies over space, so VΨ is really the function
x 7→ V (x)Ψ(x). (For this reason, you’ll often see V written with an operator hat V̂ .)

It’s not obvious that − ℏ2

2m

δ2Ψ

δx2
is actually the kinetic energy of Ψ. Ultimately, we

believe that it is the kinetic energy because it agrees with experiment, but we can give
(somewhat handwaving) derivations of this result from other experimental results, in
particular wave-particle duality—the fact that small particles demonstrate wavelike phe-
nomena such as interference. One example of this is the double-slit experiment: if you
fire electrons through a barrier with two parallel slits at a screen that lights up where
an electron hits it, the screen will display a pattern of diffraction and interference char-
acteristic of wave phenomena, with alternating light and dark fringes. The distance
between the fringes lets you calculate the “wavelength” of the electrons.

We can derive (with a bit of handwaving) formulas for the momentum and thereby
kinetic energy operators along these lines (discussion here is adapted from Frank J.
Pilar, Elementary Quantum Chemistry):

1. In one dimension,1 the energy E, momentum p, wavelength λ, and frequency ν
of a particle follow the experimentally determined relations pλ = h = 2πℏ (the de
Broglie relation).

2. If particles are modeled by complex wavefunctions, it’s reasonable to suppose
that a particle with wavelength λ and definite momentum in the positive x-
direction might have the wavefunction

Ψ(x, t) = C exp

(
2πi

λ
x− vt

)
where C is some constant and v is the particle’s velocity, which is positive if the
particle is moving in the positive x-direction.

If we differentiate Ψ with respect to x, we get
∂Ψ

dx
=

2πi

λ
C

(
2πi

λ
x− vt

)
=

2πi

λ
Ψ:

that is, Ψ is an eigenstate of
∂

∂x
with eigenvalue

2πi

λ
. And the de Broglie relation

gives
2πi

λ
=
ip

ℏ
, so the operator

ℏ
i

∂

∂x
would simply extract p, the momentum of

the wave, as an eigenvalue.

(Griffiths gives another derivation of the momentum operator in section 1.5, but
his derivation takes the Schrödinger equation for granted.)

1In one dimension, we can treat vector quantities such as momentum as just other scalar quantities.
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3. The classical equations p = mv and E = mv2/2, giving momentum and kinetic
energy in terms of mass and velocity, can be combined to give kinetic energy in
terms of mass and momentum E = p2/2m. Applying the momentum operator
ℏ
i

∂

∂x
twice (equivalent to applying −ℏ2

∂2

∂x2
once) extracts p2 as an eigenvalue

from a momentum eigenstate, so − ℏ2

2m

∂2

∂x2
gives the kinetic energy.

1.2 The statistical interpretation

This section merely spells out in detail things that we mentioned prior: in particular,
that the squared amplitude of a wave function can be interpreted as a probability. (This
isn’t really something that you can work out a priori, but again, the ultimate test is that
it agrees with experiment.)

The takeaway of wavefunction collapse is also important: if you measure a particle
or system to have some value of a quantity, then the system changes state to the state
with that definite value of that quantity (i.e. to the eigenstate of the corresponding
operator for that quantity). This is unavoidably weird and there’s a lot of philosophical
speculation about what actually happens.

1.3 Probability

This is a review of basic techniques for working with expected values and variances.
There’s not much here if you remember basic statistics, but the formula σ2 = ⟨x2⟩−⟨x⟩2
for variance is worth memorizing: you’ll use it a lot.

1.4 Normalization

We covered the concept of normalization in the prefatory discussion, but to reempha-
size: squared amplitudes of a wavefunction represent probability densities, and the
integral of a probability density has to equal 1. Often you’ll find that a formula for a
particle’s wavefunction includes some scalar constant, and you have to set the constant
so that this normalization criterion is satisfied.

Griffiths offers a proof that a state that’s normalized at time t = 0 stays normalized
for all t by directly working with the Schrödinger equation. There’s another argument
that works directly from the fact that Ĥ is Hermitian. We have the generic form of the
Schrödinger equation

iℏs′(t) = Ĥs

or

s′(t) = − i

ℏ
Ĥs(t)
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If Ĥ is Hermitian, then

d

dt
⟨s(t), s(t)⟩ = ⟨s(t), s′(t)⟩+ ⟨s′(t), s(t)⟩ (product rule; see section 0.3)

=

〈
s(t),− i

ℏ
Ĥs(t)

〉
+

〈
− i

ℏ
Ĥs(t), s(t)

〉
(Schrödinger equation)

= − i

ℏ

〈
s(t), Ĥs(t)

〉
+
i

ℏ

〈
Ĥs(t), s(t)

〉
(inner product is antilinear in first argument and linear in second)

= 0 (Ĥ is Hermitian)

so ⟨s(t), s(t)⟩ is constant.

1.5 Momentum

This section develops formulas for velocity and momentum operators—or, more pre-
cisely, formulas for the expected values of velocity and momentum that follow the
format

〈
Ψ
∣∣∣Â∣∣∣Ψ〉

=
∫
Ψ(x)∗Â(Ψ)(x) dx, from which we can extract a formula for the

operator Â. (The notation Â(ψ)(x) may seem confusing; what it says is “apply the op-
erator Â to the whole wavefunction ψ, producing another wavefunction that we then
evaluate at x.”) We gave a handwaving development of a momentum operator in sec-
tion 1.1, but that version started from more basic experimental considerations, whereas
Griffiths’ development here takes the Schrödinger equation as granted.

1.6 The uncertainty principle

Nothing to add here.



Chapter 2

Time-independent Schrödinger
equation

2.1 Stationary states

Griffiths’ basic method in this chapter, put slightly more abstractly, is the following:

1. Start with the Schrödinger equation iℏ
∂Ψ

∂t
= ĤΨ. Look for solutions of the form

Ψ(x, t) = ψ(x)ϕ(t). If Ĥ does not have any derivatives with respect to t,1 then we
can treate the ϕ(t) component on the right as a constant, getting

iℏψ(x)ϕ′(t) = ϕ′(t).

Similarly, we can treat ψ as a constant with respect to differentiation by t, getting
the result

iℏψ(x)ϕ′(t) = ϕ(t)Ĥψ(x).

2. This equation can be rearranged to

iℏ
ϕ′(t)

ϕ(t)
=

1

ψ(x)
Ĥψ(x).

Now if Ĥ has no time dependence at all, the LHS depends only on t and the right
only on x. Both sides must therefore be equal to some constant E.

3. On the RHS, E =
1

ϕ(x)
Ĥψ(x) says that ψ(x) (and thus Ψ(x)) is an eigenfunction

of Ĥ with eigenvalue (i.e. energy) E. Now, Ĥ is some differential operator, so
setting the RHS equal to E gives a differential equation that we can solve to get

1Griffiths says that this step is possible as long is Ĥ is completely independent of t, but this condition
is actually stronger than necessary: even if Ĥ involves t-dependent terms, as long as those terms are only
getting multiplied with Ψ rather than being differentiated or integrated, they can be treated as constants
with respect to differentiation and integration by other variables, and we can still rewrite Ĥ(ψ(x)ϕ(t))

as ϕ(t)Ĥψ(x). This slight generalization isn’t of much practical use, though, because we need complete
time-independence of Ĥ for the next step.

16



2.1. STATIONARY STATES 17

the corresponding values of ψ; the physically attainable values of E will be what-
ever values give a normalizable state that matches the boundary conditions (for
instance, ϕ(x) = 0 at either end of an infinite well).

The LHS, meanwhile, is iℏ
d

dt
lnϕ(t), with general solution ϕ(t) = Ce−iEt/ℏ. So

stationary states are ϕ(x)e−iEt/ℏ for any eigenstate ϕ of Ĥ .

4. The solutions to iℏ
∂Ψ

∂t
= ĤΨ are elements of the kernel of the linear operator

iℏ
∂

∂t
−Ĥ , which must be a linear subspace of the state space, so we can get (at least

some) solutions as a linear combination of the separable solutions. (It’s harder to
prove that every solution is a linear combination of the separable solutions, and
Grifiths handwaves this.)

Time evolution of energy eigenstates. If Ψ is an eigenstate of Ĥ (that is, it’s a state
with definite energyE), then the Schrödinger equation (reintroducing explicit notation
for the space and time inputs to Ψ) becomes

iℏ
∂Ψ(x, t)

∂t
= EΨ(x, t)

with no derivative with respect to x involved. The solution to this equation is

Ψ(x, t) = e−iEt/ℏΨ(x, 0);

that is, an energy eigenstate keeps the same wavefunction shape, only changing by an
overall complex phase e−iEt/ℏ that revolves around the unit circle at a rate proportional
to E.

This is true for any eigenstate Ψ of Ĥ , even if Ĥ has time-dependence. That is, every
eigenstate of Ĥ is also a stationary state. Griffiths’ separation-of-variables technique
proved that the converse is true if Ĥ is time-independent: every solution that can be
separated as ϕ(x)ϕ(t), in this case, is also an energy eigenstate.

Normalized linear combinations of energy eigenstates stay normalized. As a lin-
ear combination of energy eigenstates evolves through time (and remember that time
evolution is linear, so we can look separately at the time evolution of each constituent
eigenstate of an arbitrary state and then add the results), the associated coefficients will
change complex phase but not absolute value, so the sum of squared absolute values
of their coefficients—which must equal 1 for a normalized state—won’t change, either.
We already proved this without reference to decomposing states into eigenstates, but
it may help to see it spelled out again in a different context.

Potential energy and meaninglessness of overall phase. You may note something
questionable about potential energy V in the Schrödinger equation: potential energy
can only be defined relative to some arbitrarily chosen baseline of zero potential. But if
we changed the baseline—a change purely in mathematical convention that shouldn’t
affect the physics—then we also change the Schrödinger equation solutions as well.

The resolution to this seeming paradox is that not all wavefunctions correspond
to meaningfully different states. In particular, the amplitude of a wavefunction has
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physical meaning (correspondng to the probability of finding a particle in a particu-
lar location), and the difference between complex phases of two wavefunctions also has
physical meaning (this is what gives rise to interference phenomena: the amplitude
of a sum of wavefunctions of different particles at a particular point is different from
the sum of the individual wavefunctions’ amplitudes if the wavefunctions don’t have
matching phases). But the complex phase has no meaning by itself. In particular, if you
multiply every wavefunction (or other state) in a system by some complex phase eiθ,
amplitudes and phase differences between wavefunctions—and, therefore, the actual
physics of the system—remain unchanged.

Now let’s remember the time evolution for energy eigenstates:

Ψ(x, t) = e−iEt/ℏΨ(x, 0);

If we redefined the potential energy baseline down by some quantity E ′ (equivalent to
adding E ′ to the energy of every eigenstate), the solution becomes

Ψ(x, t) = e−i(E+E′)t/ℏΨ(x, 0) = e−iE′te−iEt/ℏΨ(x, 0).

That is, every energy eigenstate, regardless of its own energy, simply picks up an over-
all phase e−iE′t/ℏ. At any moment of time, this phase is the same for every eigenstate,
so the phase differences between eigenstates—and, therefore, the overall amplitudes
of any state constructed out of a linear combination of eigenstates—remain unaffected.

Infinite sums in vector spaces. In pure linear algebra, vector spaces only have con-
cepts of finite sums, while Griffiths is using infinite sums. You can define infinite sums
on vector spaces that have an idea of a norm or an inner product: in this case, an infi-
nite sum v1+v2+v3+· · · can be said to converge to a limit w if ||v1−w||, ||v1+v2−w||,
||v1+v2+v3−w|| converges (as a sequence of real numbers) to zero—that is, if for ev-
ery positive real number ϵ you can find some index N such that ||v1+ · · ·+vn−w|| < ϵ
whenever n > N .

In real analysis classes, you’ll learn all about the hazards of extending common-
sense results on finite sums to infinite sums. For instance, an infinite sum of elements
of a vector subspace (defined as a subset of vectors closed under scalar multiplication
and finite vector sum) doesn’t necessarily converge to an element of that subspace.2

Similarly, it’s possible to construct linear operators T : V → V that are topologically
discontinuous, to the effect that even if v1 + v2 + · · · is defined, Tv1 + Tv2 + · · · may
not be.

In QM, though, you can generally ignore these difficulties: in particular, an infi-
nite sum of solutions to a differential equation (which, remember, make up a vector
subspace of functions) is also a solution.

2Example: consider a space that we’ll denote ℓ2, the set of infinite sequences (x1, x2, x3, . . .) of real
numbers such that

∑∞
i=1 x

2
i < ∞, with addition and multiplication defined component-by-component

and inner product ⟨(x1, x2, . . .), (y1, y2, . . .)⟩ =
∑∞

i=1 xiyi (which, by the Cauchy–Schwarz inequality,
must be finite if

∑
x2i and

∑
y2i are both finite), and letW be the subspace of ℓ2 with only a finite number

of nonzero entries. Then you can construct infinite sums of elements of W , such as (1, 0, 0, 0, . . .) +
(0, 1/2, 0, 0, . . .) + (0, 0, 1/4, 0, . . .) + (0, 0, 0, 1/8, . . .) + · · · , whose values are defined in ℓ2 but not in W .
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2.2 The infinite square well

In this section, Griffiths presents a simple physical system: the infinite square well
(sometimes also called “particle in a box”). The box has flat potential inside but infinite
potential outside, so the particle is free to move inside but can’t cross outside.

The stationary states of the particle in the box are sinusoids with one-half, one,
three-halves, etc. periods contained in the box’s length. (This is a good time to mention
a general rule of thumb: wavefunctions with graphs that have more and sharper curves
are higher-energy.) Griffiths makes the following claims about the stationary states:

1. The stationary states are all orthogonal to each other (and offers a proof).

2. Any wavefunction at all can be constructed as an infinite linear combination of
these stationary states; that is, the stationary states are mathematically complete.
(This is not proved.)

3. As a result of (1), we can extract the coefficient of such a linear combination for a
given stationary state by taking inner products of the wavefunction on the right
with the stationary state in question on the left.

These properties are true of most quantum systems (for some of them, we have to
repalce a sum over a countable number of stationary solutions with an integral over
an uncountable number). It’s worth elaborating on them in a slightly more general
setting.

Coefficient extraction with inner products. Suppose that V is some vector space (real
or complex) with an inner product defined on it and v1, . . . ,vn are some linearly inde-
pendent basis vectors. If v1, . . . ,vn are orthonormal (that is, ⟨vi,vj⟩ is 1 if i = j and 0 if
i ̸= j), and we have some other vector w = c1v1 + · · ·+ cnvn, then

⟨vi,w⟩ = ⟨vi, c1v1 + · · ·+ cnvn⟩ = c1 ⟨v1,w⟩+ · · ·+ cn ⟨vn,w⟩ = ci.

That is, we can extract a coefficient out of w by taking an inner product that puts w on
the right and the basis vector whose coefficient we want on the left. Some books will
call (|v1⟩ ⟨v1|) + · · · + (|vn⟩ ⟨vn|) an “identity operator”, that is, w = (|v1⟩ ⟨v1| + · · · +
|vn⟩ ⟨vn|)w, and expanding the right-hand side of this equation gives a decomposition
of w into orthogonal components. And if we can decompose a state into a sum of
stationary states at time t = 0, we know the total time evolution of the series.

Griffiths’ discussion of orthogonal states of the infinite square well is just a special-

ization of this: the wavefunctions ψn =

√
2

a
sin

(nπ
a

)
x all satisfy

⟨ψm, ψn⟩ =
∫ a

0

ψm(x)
∗ψn(x) dx =

{
1 m = n

0 m ̸= n

so they’re orthonormal, and given any state ψ = ψ∞
n=1cnψn, you can extract the coeffi-

cient cn as ⟨ψn, ψ⟩ =
∫ a

0
ψn(x).
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Bigger box = lower energy. Grififths presents the formula En =
n2π2ℏ2

2ma2
for the en-

ergy level of the stationary state with n half-periods (where, again, a is the size of
the box). One consequence of this formula, with important qualitative implications in
other fields, is that the energy of the particle decreases as the size of the well increases.
This turns out to be a general fact: giving particles more space decreases their energy.

This fact is important in chemistry: molecules with lower-energy electrons are more
stable and less reactive. You may have learned that molecules that have multiple res-
onance structures are more stable because of “electron delocalization.” For instance,
formic acid (HCOOH) is acidic because when the proton on the -OH group leaves,
the resulting formate ion has two resonance structures: one lone pair on the newly
deprotonated oxygen atom can form a pi bond to the carbon atom.

The p orbitals on the carbon atom and the two oxygens form a large “box” for
two electrons that extends from one oxygen atom to the other, lowering their energy
compared to a lone pair confined to a single oxygen atom. This makes the formate ion
lower-energy and less reactive—in particular, less prone to recombine with one of its
lost protons to form a formic acid molecule.

By contrast, in chemicals such as methanol, if the hydrogen from the hydroxyl
group leaves, the remaining structure does not have any resonance stabilization: its
electrons are roughly as reactive as they were before. This is why, unlike formic acid
and other chemicals with the carboxylic acid radical -COOH, methanol and other alco-
hols are not acidic.

2.3 The harmonic oscillator

Commutator bracket. Griffiths introduces the notation [A,B] = AB − BA for the
commutator of two operators A and B. Seeing a few properties of the commutator
presented abstractly may make Griffiths’ discussion easier to follow.

1. The commutator is linear in each argument: that is, [c1A1 + c2A2, B] = c1[A1, B] +
c2[A2, B], and likewise for the second argument.

2. Because the commutator is linear in each argument, the expression [A+B,A−B]
can be expanded as [A,A]+[B,A]−[A,B]−[B,B]. Every operator commutes with
itself, so this expression equals [B,A] − [A,B] = 2[B,A] = −2[A,B]. Similarly,
[A−B,A+B] = 2[A,B].

3. The commutator appears as an additional term as the “factoring” of A2 − B2

(where squaring, remember, just means operator composition: the square of
d

dx

is the second derivative operator
d2

dx2
. If we expand (A + B)(A − B), we get

A2 − AB + BA + B2 = A2 + B2 − [A,B], so A2 − B2 = (A + B)(A − B) + [A,B].
Similar logic gets us the alternate factoring A2 −B2 = (A−B)(A+B) + [B,A] =
(A−B)(A+B)− [A,B].

Two important operators are x (that is, the map that takes a function f to the func-
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tion x 7→ xf(x)) and d
dx

. This means:[
x,

d

dx

]
f(x) = x

d

dx
f(x)− d

dx
(xf(x))

= xf ′(x)− (xf ′(x) + f(x))

= −f(x)

That is,
[
x,

d

dx

]
is the negative identity operator −I (which we could also denote −1).

Definitions of ladder operators Eigenstates of the Harmonic oscillator are separable
solutions to the 1D Schrödinger equation with V = mω2x2/2; that is,

iℏ
∂Ψ

∂t
=

(
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2

)
Ψ

The term in parentheses is Ĥ . Applying the factoringA2−B2 = (A+B)(A−B)+[A,B]

with A = mωx and B = ℏ
d

dx
gets us

Ĥ =
1

2m

((
mωx+ ℏ

d

dx

)(
mωx− ℏ

d

dx

)
+

[
mωx, ℏ

d

dx

])
=

1

2m

((
mωx+ ℏ

d

dx

)(
mωx− ℏ

d

dx

))
− ℏω

2

= ℏω
(
mωx+ ℏ d/dx√

2mℏω
mωx− ℏ d/dx√

2mℏω
− 1

2

)
where in the step from the first equation to the second, we extracted the coefficients

on x and
d

dx
by using the fact that the commutation bracket is linear and then used[

x,
d

dx

]
= −1. The step from the second equation to the third is just shuffling coeffi-

cients around.
We can write this in terms of the momentum operator p = −iℏ d

dx
(which still satis-

fies the classical relation E = p2/2m where E is the kinetic energy − ℏ2

2m

d2

dx2
), as

Ĥ = ℏω
(
mωx+ ip√

2mℏω
mωx− ip√

2mℏω
− 1

2

)
The two large fractions are the operators that Griffiths gives the respective names a−
and a+. We could find the commutator [a−, a+] by following Griffiths’ suggestion on
the bottom of page 43, tracing through the factoring of Ĥ again using the formula
A2 − B2 = (A− B)(A + B)− [A,B] to get an expression for Ĥ with a+ on the left. But
an easier way is to use the linearity of each argument of the commutator bracket and

the relations [A + B,A − B] = [B,A] and
[
x,

d

dx

]
= −1 (so [x, p] =

[
x,−iℏ d

dx

]
= iℏ).

The commutators end up being [a+, a−] = −1 and [a−, a+] = 1.
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The ladder operators are each other’s adjoints Griffiths mentions on p. 47 that the
ladder operators a+ and a− are “hermitian conjugates” of each other (another term is

adjoint): that is, ⟨f, a±g⟩ = ⟨a∓f, g⟩. One cleaner way to see this: remember that
d

dx
is

a skew-Hermitian operator (when acting on functions that vanish at each endpoint),

so its imaginary multiple p = −iℏ d
dx

is Hermitian. The operator x, which multiplies
inputs by a fixed real-valued function, is also Hermitian. So a+ and a− have the form
A+ iB and A− iB where A and B are Hermitian.

If A and B are any two Hermitian operators on an arbitrary vector space, then

⟨v, (A+ iB)w⟩ = ⟨v, Aw⟩+ i ⟨v,w⟩

by linearity of the inner product in the first argument. Similarly,

⟨(A− iB)v,w⟩ = ⟨Av,w⟩+ i ⟨Bv,w⟩ = ⟨v, Aw⟩+ ⟨v, Bw⟩

by antilinearity of the inner product in the first argument and the fact that A and B are
Hermitian. A similar argument establishes that ⟨v, (A− iB)w⟩ = ⟨(A+ iB)v,w⟩. So
A+ iB and A− iB are each other’s Hermitian conjugates.

Other properties of ladder operators. Griffiths proves several properties of a+ and
a− and the eigenstates ψn. Many of his proofs can be simplified if you recognize that
he’s just rederiving, in a specific context, several general properties of adjoint and Her-
mitian operators. It’s useful to have these properties in an easy-to-consult list with a
short sketch of the justification:

1. The commutation relation [a+, a−] = −1, as before.

2. If ψ is a nonzero eigenstate of Ĥ with eigenvalue (i.e. energy) E, then a+ψ and
a−ψ are (not necessarily normalized) eigenstates with respective energies E + ℏω
and E − ℏω. The proof involves starting with Ĥ(a+ψ) and using the fact that
Ĥ has two expressions, one with an a−a+ term and one with an a+a− term, to
rewrite it as a+(Ĥ + ℏω)ψ = a+(E + ℏω)ψ = (E + ω)ℏψ.

3. As Ĥψ = ℏω
(
a+a− + 1

2

)
ψ = ℏω

(
a−a+ − 1

2

)
ψ for anyψ and Ĥψn = ℏω

(
n+

1

2

)
ψn

for the eigenstate ψn, it follows that a+a−ψn = n and a−a+ψn = n + 1. (Note that
this agrees with the commutator relation [a+, a−] = −1.) Some books call a+a−
the “number operator,” though Griffiths doesn’t.

4. a− has nonzero kernel: that is, there’s some ψ0 such that a−ψ0 = 0. To find ψ0,
remember that a−ψ0 = 0 is just shorthand for the first-order differential equation

1√
2ℏmω

(
ℏ d
dx

+mωx
)
ψ0 which you can solve by separation of variables and then

normalize to get

ψ0(x) =
(mω
πℏ

)1/4

exp
(
−mω

2ℏ
x2
)
.

Any state that satisfies a−ψ0 = 0 must also satisfy Ĥψ0 = ℏω
(
a+a− +

1

2

)
ψ0 =

ℏω
2
ψ0, so ψ0 has energy

1

2
ℏω.
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5. Because the raising operator takes eigenstates of Ĥ to eigenstates of Ĥ , we get

a whole series of eigenstates ψn := Ana
n
+ψ0 with energy

(
n+

1

2

)
ℏω, where the

quantities An are some normalization constants and A0 = 1.

6. We can get the constants An by noting that if ψn is a normalized eigenstate, then
⟨a+ψn, a+ψn⟩ = ⟨ψn, a−a+ψn⟩ = ⟨ψn, (⟩n+1)ψn = n+1. So we have to divide a+ψn

by
√
n+ 1 to get a properly normalized eigenstate, so An+1 = An√

n+1
. As A0 = 1,

so An =
1√
n!

.

7. The eigenstates are orthonormal. Griffiths’ proof here essentially boils down to
proving two general facts about operators: the composition of adjoint operators
such as a+ and a− is a Hermitian operator, and eigenstates of Hermitian operators
with different eigenvalues are orthogonal (remember that a+a−ψn = nψn).

Analytic method. An abbreviated description of Griffiths’ method. Griffiths intro-

duces the dimensionless coordinate ξ =

√
mω

ℏ
x and energy K =

2E

ℏω
with respect to

which the Schrödinger equation becomes

d2ψ

dξ2
= (ξ2 −K)ψ

and argues based on the behavior for |ξ| → ∞ that the solution should have the form

ψ(ξ) = h(ξ)e−ξ2/2

with
d2h

dξ2
− 2ξ

dh

dξ
+ (K − 1)h = 0.

This has solutions heven(ξ) = a0 + a2ξ
2 + a4ξ

4 + · · · and hodd(ξ) = a1 + a3ξ
3 + a5ξ

5 + · · · .
Plugging either power series into the equation gives the recursion for the coefficients

aj+2 =
2j + 1−K

(j + 1)(j + 2)
aj

This equation gives us a non-normalizable solution with the coefficients a2j, a2j+1 =

O

(
1

j!

)
and thus hodd, heven = O(eξ

2
) unless K is an odd integer, in which case the

power series at some point becomes 0.
The terminating power series are called Hermite polynomials Hn and the general

formula is
ψn(x) =

(mω
πℏ

)1/4 1√
2nn!

Hn(ξ)e
−ξ2/2.

2.4 The free particle

It’s worth briefly tracing out Griffiths’ discussion here and also emphasizing the phys-
ical meaning of all the variables that he defines.
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Remember that if ψ is an eigenstate of the Hamiltonian with eigenvalue E, then
Ψ(x, t) = ψ(x) exp(−iEt/ℏ) solves the Schrödinger equation −iℏ∂Ψ

∂t
= ĤΨ. This is what

Griffiths means by exp(−iEt/ℏ) being the “standard time dependence.” Remember
also that in a generic complex wave function of form A exp [i(kx− ωt)]:

• k is wave number: the number of radians in the wave per unit distance.

• ω is angular frequency: the number of radians that pass any point per unit time.

• The ratio
ω

k
is the phase velocity of the wave: the linear speed at which any peak

or valley moves. (Note that if you use a space coordinate ξ = x− ω

k
t that moves

along with the wave, the formula for the wave becomes a time-invariant function
of just ξ.)

For a one-dimensional particle, if V = 0 and E > 0, then the stationary states of Ĥ
solve

− ℏ2

2m

d2ψ

dx2
= Eψ

with general eigenstates
ψ(x) = Aeikx +Be−ikx

with wave number k =

√
2mE

ℏ
. The corresponding time-dependent wave function is

Ψ(x, t) = A exp

[
i

(
kx− E

ℏ
t

)]
+B exp

[
i

(
−kx− E

ℏ
t

)]
The first term is a wave traveling to the right; the second term is a wave traveling to
the left. We can write the basis solutions as

Ψ(x, t) = exp[i(±kx− ωt)]

with the new variable ω =
E

ℏ
=

ℏk2

2m
. The speed of both waves is

v =
ω

k
=

ℏk
2m

=
√
E2m.

This is half the speed of a classical particle: E = mv2/2 =⇒ v =
√
2E/m.

These solutions aren’t normalizable, but we can represent any state of a free particle
as a sum of some number of these solutions with infinitesimal coefficients (that is, as

an integral). If
1√
2π
ϕ(k) is the infinitesimal contribution of eikx to a starting state ψ(x),

then we can get ϕ(k) by taking an “inner product” with eikx on the left:

ϕ(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx

though this integral usually can’t be evaluated symbolically.
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We can evaluate the group velocity (movement of the “envelope” of the wave
peaks, as opposed to any individual peak) by starting with a generic wave equation

Ψ(x, t) =
1√
2π

∫ ∞

−∞
ϕ(k)ei(kx−ωt) dk

where ω is a function of k. If the wavenumbers in a packet are concentrated around
k0, then choose some point k0 and write ω0 = ω(k0), ω′

0 = ω′(k0). Adopting the new
variable s = k − k0, ds = dk and using the Taylor approximation ω(k0 + s) ≈ ω0 + ω′

0s
gives

Ψ(x, t) ≈ 1√
2π

∫ ∞

−∞
ϕ(k0 + s) exp [i ((k0 + s)x− (ω0 + ω′

0s)t)] ds

then factor out the terms in the integrand not dependent on x into an overall phase
(which accounts for the difference between group and phase velocities), we can get the
formula

Ψ(x, t) ≈ 1√
2π

exp [i (−ω0t+ k0ω
′
0t)]︸ ︷︷ ︸

overall phase

∫ ∞

−∞
ϕ(k0 + s) exp [i(k0 + s)(x− ω′

0t)]︸ ︷︷ ︸
envelope movement

ds

If ϕ(k0 + s) is very small except around s = 0, then the envelope will move with a
velocity given by the ratio of t and x coefficients in the integrand, or ω′

0. For the QM

free particle dispersion relation ω =
ℏk2

2m
, we have ω′

0 =
ℏk
m

=

√
2E

m
, which is also the

classical result.

2.5 The delta-function potential

Bound and scattering states Griffiths classifies states into two ways:

1. Bound state: energy is less than the potential at ∞; particle is confined to a finite
region of space.

2. Scattering state: energy is greater than the potential at ∞; particle will eventually
go (or spread) to infinity.

Scattering states include quantum tunneling: if a state has initially in some region
surrounded by a potential barrier of finite height and width, but it has higher energy
than the potential at ∞, then it will eventually leak out of the barrier even if it has
lower energy than the barrier.

Dirac delta function The Dirac delta function is a pseudo-function with δ(0) = +∞
and δ(x) = 0 elsewhere, with the property that∫ ∞

−∞
δ(x− a)f(x) dx = f(a).

Griffiths studies the potential V (x) = −αδ(x) with α > 0. This is mostly the same as
the free particle potential, so we’d expect stationary solutions with exponentials: either
Aeκx+Be−κx for negative energy (and one or the other term has to have coefficient zero
to get a normalizable state), or Aeikx +Be−ikx for positive energy.
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Derivative discontinuity across the Dirac potential Griffiths relies on one result
whose generality may be clearer if presented in isolation. Suppose that V is some
potential that includes a multiple kδ(x) of the Dirac potential at zero, and ψ is a nec-
essarily continuous eigenstate of the potential.3 Write ψ′(0+) and ψ′(0−) as shorthands
for the one-sided limits limx→0+ ψ

′(x) and limx→0− ψ
′(x).

Then if we integrate the Schrödinger equation

− ℏ2

2m
ψ′′(x) + V (x)ψ(x) = E(x)ψ(x)

over an interval [−ϵ, ϵ], then we get

− ℏ2

2m
(ψ′(ϵ)− ψ′(−ϵ)) +

∫ ϵ

−ϵ

V (x)ψ(x) dx =

∫ ϵ

−ϵ

E(x)ψ(x).

As we take ϵ→ 0, all the finite parts of the integrals become zero, so the RHS becomes
zero and

∫ ϵ

−ϵ
V (x)ψ(x) becomes kψ(0). So we’re left with the equation

− ℏ2

2m
(ψ′(0+)− ψ′(0−)) + kψ(0) = 0

or, rearranged

ψ′(0+)− ψ′(0−) =
2mk

ℏ2
ψ(0).

That is, in crossing a delta potential with amplitude k from left to right, the derivative

of an eigenstate ψ has to change by
2mk

ℏ2
ψ(0).

Griffiths’ treatment of delta potential The summary of Grififths’ discussion (which
doesn’t need much clarification) is:

1. If E < 0, then taking solutions of the form ψ(x)Aeκx+Be−κx where κ =

√
−2mE

ℏ
,

using normalizability considerations to conclude that B = 0 for x < 0 and A = 0
for x > 0, and using the fact that ψ must be continuous even at zero gives the
solution ψ(x) = Be−κ|x|.

Not every value of κ is allowable, though: substituting ψ(0) = B, k = −α, and
ψ′(0±) = ∓Bκ into the equation for derivative discontinuity across a delta poten-

tial gives κ =
mα

ℏ2
, so E =

ℏ2κ2

−2m
= −mα

2

2ℏ2
. The normalization constant B =

√
mα

ℏ
is easy to compute.

2. For scattering states E > 0, take a solution of the form Aeikx + Be−ikx where

E =

√
2mE

ℏ
at x < 0 and Feikx + Ge−ikx at x > 0. This isn’t a normalizable

solution: it represents a current or beam of particles, not a single particle.

3Also assume there’s some interval [−ϵ, ϵ] around x = 0 with no Dirac terms in the potential except
the one at x = 0.
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There are four unknown constants with two equations relating them:

A+B = F +G (continuity at zero)

(iFk − iGk)− (iAk − iBk) = −2mα

ℏ2
(A+B)

(derivative discontinuity across a Dirac potential)

The solution is a two-dimensional space. We can get basis solutions by setting:

• G = 0: this is a beam from the left (amplitude given by A) that splits into
a reflected beam back to the left (amplitude given by B) and a transmitted
beam to the right (amplitude given by F ).

• A = 0: incident beam from right (G) splits into reflected beam back to right
(F ) and transmitted beam to left (B).

In the first scenario (the second is symmetrical), we get reflection and transmis-
sion coefficients

R =
|B|2

|A|2
=

β2

1 + β2

T =
|F |2

|A|2
=

1

1 + β2

where β =
mα

ℏ2k
=

α

ℏ

√
m

2E
. Note that E → ∞ means β → 0 and thus T → 1:

higher energy means greater transmission.

We can get normalizable states by taking wave packets of the eigenstates, so the
reflection and transmission coefficients could also be interpreted as probabilities
of the transmission or reflection of single particles with energy approximately E.

2.6 The finite square well

The potential studied in this section is

V (x) =

{
−V0 a ≤ x ≤ a

0 elsewhere

for some constant a. In each of the regions x < −a, −a < x < a, and x > a, the potential
V is flat, so the solutions (as we’re used to by now) are a combination of two sinusoids
or exponentials.

For bound states −V0 < E < 0 (having energy less than the minimum of V , as
Griffiths remarks, is impossible), eigenstates must decay exponentially as x → ∞ for
|x| > a and oscillate sinusoidally inside V0.

Furthermore (this is the logic by which Griffiths intends you to solve problem
2.1(c)), suppose ψ is any wavefunction, and write ψ−(x) = ψ(−x). If V and ψ are
even, then ψ′′

−(x) = ψ′′(x) and V (x)ψ′′
−(x) = V (x)ψ′′(x); if V is even and ψ is odd, then

ψ′′
−(x) = −ψ′′(x) and V (x)ψ−(x) = −V (x)ψ(x). In either case, if ψ solves − ℏ2

2m
ψ′′(x) +
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V (x)ψ(x) = Eψ(x), then so does ψ− with the same eigenvalue (the two sides of the
eigenvalue equation keeping the same value if ψ is even and flipping sign if ψ is odd).
So any eigenstate ψ can be split into the sum of an even part ψ(x) + ψ(−x) and an odd
part ψ(x) − ψ(−x) with necessarily the same eigenvalue, so if we have separate bases
of odd and even eigenstates, putting them together gives a basis of all eigenstates.

The general form of an even eigenstate is

ψ(x) =

{
Fe−κ|x| |x| > a

D cos(ℓx) |x| < a

where κ =

√
−2mE

ℏ
(as in bound states of the delta potential) and ℓ =

√
2m(E + V0)

ℏ
(like the constant k in the free particle, only with potential energy measured relative to
a baseline of −V0 rather than zero).

The general form for an odd eigenstate, on the other hand, would look like

ψ(x) =


−Feκx x < −a
D sin(ℓx) −a < x < a

Fe−κx x > a

As V doesn’t have Dirac terms, so ψ and ψ′ are continuous at x = ±a. These condi-
tions yield the transcendental equation (Griffiths gives the full derivation)

tan z =
√

(z0/z)2 − 1

where z = ℓa = a

√
2m(E + V0)

ℏ
and z0 =

a
ℏ
√
2mV0.

Griffiths shows a graphical solution on p. 218. The number of solutions is z0/π
rounded up, with the nth solution (counting from zero) having the form πn + f(n)
where f(n) decreases monotonically from π/2 to 0. As the well becomes wider and
deeper, approaching an infinite square well (z0 → ∞), the number of bound states
increases; a small well, though, will have only one even bound state.

For scattering states with E > 0, eigenstates oscillate sinusoidally with period√
2mE

ℏ
outside the well and with period

√
2m(E + V0)

ℏ
inside it. The general solu-

tion is a piecewise composite of three functions with two coefficients each (left, inside,
and right of the well) with four boundary conditions (continuity of wavefunction and
derivative at x = ±a).

Transmission coefficients can be analyzed just as with the delta potential: the re-
sults are that (a) transmission generally increases as energy increases, but (b) transmis-
sion coefficents oscillate, and for energies corresponding to bound states of the infinite
square well of the same size, transmission is perfect.



Chapter 3

Formalism

Little in this chapter should be new if you have previous experience with the abstract
approach to linear algebra. The main points that may bear reiteration are:

1. Observable quantities are represented by Hermetian operators. A state with a
definite value of some observable quantity is an eigenvalue of that operator. Ex-
pectation values for any particular state are weighted averages of the eigenvalues
with real weights, so if all the eigenvalues are real, then any expectation value
must also be real.

2. A complete basis for a Hilbert space is one such that every element of the space
can be written as an infinite sum of multiples of the basis elements. (In Hilbert
spaces, unlike in generic vector spaces, we do have a notion of infinite sums).

It’s an axiom of QM that if an operator represents an observable quantity, then its
eigenfunctions are complete.

3. An eigenvalue is degenerate if the corresponding eigenspace has dimension 2 or
greater.

4. There are some operators that have continuous spectra (sets of eigenvalues) and
eigenstates that aren’t actually normalizable. Griffiths gives the example of the

momentum operator −iℏ d
dx

with eigenstates exp
ipx

ℏ
. Non-normalizability means

that we don’t have inner products in the usual sense, but we can get what Grif-
fiths calls “Dirac orthonormality”: if we abuse Fourier analysis to get the formula

δ(x) =
1

2π

∫ ∞

−∞
exp(ikx) dk

then we have eigenstates fp(x) =
exp(ipx/ℏ)√

2πℏ
such that∫ ∞

−∞
fp′(x)

∗fp(x) = δ(p− p′).

Much of what Griffiths calls the “generalized statistical interpretation” is covered
in the introduction in Section 0.6. The important takeaways that aren’t are:

1. To get the probability that a particle’s position will be measured in a certain re-
gion, integrate the squared absolute value of the wavefunction over that region.

29
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2. To get the probability that a particle’s momentum will be measured in a certain
range, compute the Fourier transform

Φ(p, t) =
1√
2πℏ

∫ ∞

−∞
e−iptΨ(x, t)

and then integrate |Φ2| over the range of momenta.



Chapter 4

Quantum mechanics in three
dimensions

4.1 The Schrödinger equation in three dimensions

Three-dimensional operators Griffiths introduces the new notation

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
ĵ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

For the same reasons as their one-dimensional counterparts, ∇ is skew-Hermitian and
∇2 is Hermetian. (Also important: the output of ∇ is a vector and the output of ∇2 is a
number. The notation is standard, but a bit confusing: ∇2 is not just ∇ composed with
itself.) We also have the canonical substitutions

1. Vector momentum: −iℏ∇

2. Kinetic energy:
ℏ2

2m
∇2.

The commutation relations generalize: [x, px] = iℏ (and likewise for the other di-
mensions), and [x, py] = 0 (and likewise for position in one dimension and momentum
component in another). Intuitively, this should be clear: if you multiply a wavefunc-
tion by x, then you can just treat the x as a constant for the sake of differentiating by y
to compute py.

Polar coordinates Griffiths’ version of polar coordinates is the convention in physics:
r is distance from origin, θ is angle from z-axis in the range [0, π], and ϕ is the coun-
terclockwise angle from the x-axis to a vector’s projection into the xy-plane. In pure
mathematics, the convention is to have θ and ϕ the other way around.

Finally, recall (as Griffiths notes on p. 138) that the volume element in spherical
coordinates is r2 sin θ dr dθ dϕ.

Spherical harmonics It’s easy to get lost in Griffiths’ discussion of spherical harmon-
ics, and even he glosses over many details. You also won’t have to work much with
the formulas for the spherical harmonics.

31
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The upshot of Griffiths’ discussion of is that if V is a function purely of distance
from the origin, then the associated eigenstates Φ can be written using separation of
variables as

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ)

The possible angular functions Y , meanwhile, can be indexed as Y m
ℓ for integers ℓ ≥ 0

and −ℓ ≤ m ≤ ℓ. These are caled spherical harmonics, and they all have the form

Y m
ℓ (θ, ψ) = (normalization constant)× (polynomial in cos θ)× (sin θ if m is odd)× eimϕ

The polynomials in question are associated Legendre functions and are derived from the
Legendre polynomials.

This result holds for any V that depends only on r, it affects only the radial part R
of eigenstates, not the spherical harmonics. Note also that since ϕ only enters into Y in
the factor eimϕ, which has absolute value 1 and doesn’t affect the amplitude (and hence,
energy) at any point. So the energy of the resulting wavefunction is independent of m.
(Griffiths makes this point with regard to several individual systems, but it is true in
general.)

The equation for the radial part R gives a more convenient equation for u(r) =
rR(r) (Griffiths’ eq. 4.37, which he calls the radial equation):

− ℏ2

2m

d2u

dr2
+

[
V +

ℏ2

2m

l(l + 1)

r2

]
u = Eu.

The second term in square brackets is called the centrifugal term. Normalization of u
is just

∫∞
0

|u|2 dr = 1. Valid wavefunctions have to have limr→0 u(r) = 0 (otherwise
R(r) = u(r)/r has a pole).

The infinite spherical well A quick recapitulation and summary of Griffiths’ argu-
ment. The potential in question is

V (r) =

{
0 r ≤ a

∞ r > a

so we need to solve the radial equation

− ℏ2

2m

d2u

dr2
+

ℏ2

2m

l(l + 1)

r2
u = Eu

or, defining k =

√
2mE

ℏ
,

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u

with boundary conditions u(0) = u(a) = 0.
For ℓ = 1, this is just the one-dimensional infinite square well with sides 0 and a,

with solutions
u(r) = A sin(kr) +B cos(kr)

where u(0) = 0 forces B = 0 and u(a) = 0 forces k =
π

a
n for integer n.
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For l ≥ 1, the solutions to this equation, ignoring boundary conditions, are in terms
of the spherical Bessel function jl and Neumann function nl:

u(r) = Arjl(kr) +Brnl(kr).

The Neumann functions have poles at the origin, so B = 0; and k has to be chosen so
that ka equals a zero of jl. (Zeroes of Bessel functions, unfortunately, generally have
no closed forms.)

4.2 The hydrogen atom

Again, a short synopsis of Griffiths’ method on pp. 146–149 might be useful for review,
or for just keeping your bearings.

Taking the position of the proton as fixed at the origin, the electrostatic potential
energy of the electron is

V (r) = − e2

4πϵ0
r

where e is elementary charge and ϵ0 is permittivity of free space. We want bound states

with E < 0. Defining constants κ =

√
−2mE

ℏ
(with units (distance)−1, essentially

giving a characteristic distance scale for the electron’s distribution) and ρ0 =
me2

2πϵ0ℏ2k
(a dimensionless function of E and fundamental physical constants), as well as a new
dimensionless distance variable ρ = κr, makes the equation

d2u

dρ2
=

[
1− ρ0

ρ
+
l(l + 1)

ρ2

]
u.

The general procedure is this:

1. Check the asymptotic behavior for the differential equation at ρ → 0 (which
should give a polynomial) and ρ → ∞ (which should give a decaying expo-
nential).

2. Assume that the the general solution is the ρ→ 0 asymptotic f , times the ρ→ ∞
asymptotic g (which should get smaller faster than f gets larger at ρ→ ∞), times
some power series for a function h.

3. Plug a generic form u(ρ) = f(ρ)g(ρ)(c0 + c1ρ + c2ρ
2 + · · · ) into the differential

equation to get a recursive expression for the coefficients cn. Call the function
represented by the power series h.

4. Check the asymptotic growth of the coefficients of the power series to get an
asymptotic estimate for h, assuming every coefficient is nonzero. If in general
limρ→∞ f(ρ)g(ρ)h(ρ) ̸= 0, then the only differential equations that give a physi-
cally acceptable solution are the ones in which the constants guarantee that all
the coefficients turn to zero at some point.
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In this case, the requirements in point 4 force ρ = 2n for n an integer, which gives
the energy (the Bohr formula)

En = −

[
m

2ℏ2

(
e2

4πϵ0

)2
]

1

n2

where n is a positive integer. These energies, unlike the general case for radial poten-
tial, do not depend on l (which takes integer values in the range [0, n]).

4.3 Angular momentum

The angular momentum operators are Lx, Ly, Lz for components along each axis, and
L2 = L2

x +L2
y +L2

z. Note that angular momentum has units mass × distance2 × time−1,
the same as the units of ℏ.

The most important facts about angular momentum operators, with a brief sketch
of the derivation:

1. The formula Lx = ypz−zpy, just as in classical mechanics (and the other formulas
obtainable by cycling x→ y → z → x). These are sums of commuting Hermitian
operators such as y and pz, so they are also Hermitian.

2. The commutator [Lx, Ly] = iℏLz (and other formulas obtainable by cycling x, y, z).
You can get this result by substituting Lx = ypz−zpy and Ly = zpx−xpz, then ex-
panding the commutator bracket by linearity in each argument and eliminating
commutators of position along one axis with momentum along another.

3. The commutator [L2, Lx] = [L2, Ly] = [L2, Lz] = 0. You can get this by substituting
L2 = L2

x + L2
y + L2

z, expanding the commutator bracket, eliminating some of the
resulting brackets by noting that any operator commutes with its square, and
simplifying the remainder with the formula [A2, B] = A2B − BA2 = A(AB −
BA) + (AB −BA)A = A[A,B] + [A,B]A.

4. The ladder operators L± = Lx±iLy map common eigenstates of L2 and Lz to each
other, incrementing or decrementing the eigenvalue of Lz by ℏ while preserving
the eigenvalue of L2. The effects of ladder operators on the eigenvalues can be
worked out like this:

(a) Get the commutators [Lz, L±] = ±ℏL± and [L2, L±] = 0 by expanding the
commutator bracket into [Lz, Lx]± i[Lz, Ly] (and likewise for L2).

(b) L2 commutes with L±, so if f is an eigenstate of L2 with eigenvalue λ, then
L2(L±f) = L±(L

2f) = λL±f , so L±f is also an eigenstate with eigenvalue λ.

(c) The commutator [Lz, L±] = ±L± means that LzL± = L±(Lz ± ℏ), so if f is an
eigenstate of Lz with eigenvalue µ, then LzL±f = L±(Lz±ℏ)f = (µ±ℏ)L±f ,
so L±f is an eigenstate of Lz with eigenvalue ±µ. (We could have L±f = 0:
remember that the zero state is an eigenstate of every operator and has every
eigenvalue.)
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5. The possible eigenvalues of Lz for states that are also eigenstates of L2 are −l,−l+
1, . . . , l − 1, l where l(l + 1) is the eigenvalue of L2. In particular, 2l has to be an
integer.

Slight rearrangement of Griffiths’ argument: You can’t raise or lower a state to the
point that L2

z > L2, so the only eigenvalues of Lz for physically allowable states
have to be an integer multiple of ℏ away from the eigenvalue of some nonzero
state f such that L+f = 0 (and ditto for L−f = 0).

Suppose f is an eigenstate of L2 with eigenvalue l(l + 1)ℏ2 > 0 and of Lz with
eigenvalue mℏ, and L+f = 0 but f ̸= 0. Then L−L+f = 0. From the definitions
L± = Lx ± iLz and the commutator [Lx, Ly] = ℏLz, you can get the formula
L−L+ = L2 − L2

z − ℏLz.

So L−L+f = [l(l + 1) − m(m + 1)]ℏ2f = 0, so if f ̸= 0 then either m = −l − 1
(which would give L2

z a larger eigenvalue than L2, which is unphysical) or m = l.
Similarly, the smallest allowable eigenvalue of Lz is m = −l.

Every allowable value of m has to be an integer distance away from both l and
−l, so 2l has to be an integer.

6. L+f is not necessarily normalized; knowing the normalization coefficient will
be important for the spin-1/2 particles. To work out the normalization coeffi-
cient (this is Griffiths’ problem 4.18), we can note that Lx and Ly are Hermi-
tian (because they’re sums of compositions of commuting Hermitian operators
for position and momentum), so L+ = Lx + iLy and L− = Lx − iLy are each
other’s adjoints. This means that ⟨f, L−L+f⟩ = ⟨L+f, L+f⟩, and you can com-
pute ⟨f, L−L+f⟩ from the equation L−L+ = L2 −L2

z − ℏLz and assuming that f is
an eigenstate of both L2 and Lz.

7. There’s no wavefunction corresponding to half-integer l, but the same commu-
tators and ladder operators apply to the spin of a single particle, a property that
doesn’t depend on its location in space.

It may also help seeing Griffiths’ derivation of the eigenstates of L2 outlined so that
the actual equations on pp. 167–169 are easier to follow. The method is:

1. Start with the classical formula L = r × p and make the canonical substitution
p = −iℏ∇ to get an equation for L in spherical coordinates.

2. Write θ̂, ϕ̂ in terms of î, ĵ, k̂ to get an expression for L with Cartesian vector compo-
nents multiplied by coefficients written in spherical variables. These coefficients
are spherical expressions for Lx, Ly, Lz.

3. Compute L2 = L2
x+L

2
y +L

2
z; there is a shortcut from using L+L− = L2−L2

z +ℏLz

to avoid computing L2
x and L2

y directly.

4. Recognize that the eigenstate equation L2f = ℏ2l(l + 1)f has identical form to
the equation for the angular component of the energy eigenstates of an arbitrary
radial potential (and this equation is only solvable when l is an integer).
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4.4 Spin

Formalism and most important operators

1. A particle with spin s is always an eigenstate of the overall squared spin operator
S2, with eigenvalue s(s+1)ℏ2. It has 2s+1 possible values −ℏs,−ℏ(s+1), . . . , ℏ(s−
1), ℏs of the spin Sz along the z-axis. For spin-1/2 particles such as electrons, this
means two spins: 1/2 and −1/2.

Griffiths uses the notation |sm⟩ to refer to a spin-s particle with angular momen-
tum ℏm in the z-direction.

2. The states |s (−s)⟩ , |s (−s+ 1)⟩ , . . . , |s s⟩ form a basis for the total particle state
space, which has dimension 2s+1 and can be represented by the space of column
vectors with 2s+ 1 entries.

3. The commutation relations [Sx Sy] = iℏSz etc. are still valid (Griffiths suggests
we just take this as a postulate), as are the raising and lowering operators S± =
Sx ± iSy which increment or decrement the z-component of the spin.

For spin-1/2 particles, the state space is two-dimensional, and Griffiths represents
the basis elements

∣∣1
2

1
2

〉
and

∣∣1
2
(−1

2
)
〉

respectively as χ+ =
[
1 0

]
and χ− =

[
0 1

]
.

Operators on this space can all be represented as 2 × 2 matrices, and expressions
for the basic spin operators relative to the standard basis {χ+, χ−} can be worked out
algebraically (Griffiths does this on p. 174, but it’s worth repeating his method for
completeness):

1. Every state is an eigenstate of S2 with eigenvalue 3ℏ2/4, so S2 =
3

4
ℏ2

[
1 0
0 1

]
.

2. χ+ and χ− are eigenstates of Sz with eigenvalues ℏ/2 and −ℏ/2, so Sz =
ℏ
2

[
1 0
0 −1

]
.

3. S+χ− = ℏχ+ and S+ℏ = 0 (this is a special case of working out the normalization
coefficients for ladder operators, which is Griffiths’ problem 4.19 and for which

we outlined a method in the previous section), so S+ = ℏ
[
0 1
0 0

]
. Similarly, S− =

ℏ
[
0 0
1 0

]
.

4. The system S+ = Sx + iSy, S− = Sx − iSy is equivalent to Sx =
1

2
(S+ + S−),

Sy =
1

2i
(S+ − S−), from which we get

Sx =
ℏ
2

[
0 1
1 0

]
Sy =

ℏ
2

[
0 −i
i 0

]
The Pauli spin matrices σx, σy, σz are just the matrices Sx, Sy, Sz with the factor
ℏ/2 removed; note that they all have characteristic polynomial x2 − 1 and thus
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eigenvalues ±1 (that is, Sx, Sy, Sz all have eigenvalues ±ℏ
2

). Griffiths provides
the eigenvectors of σx but leaves the problem of finding eigenvectors of σy to
4.19.

Note also that the squares of the Pauli matrices are σ2
x = σ2

y = σ2
z =

[
1 0
0 1

]
: that is,

every state is an eigenstate of Sx, Sy, and Sz, with eigenvalue
ℏ2

4
.

Probability of spin measurements. The upshot of Griffiths’ discussion of spin mea-

surements is that if you can express some state with the column vector
[
a
b

]
relative

to a basis in which
[
1
0

]
is spin-up along some axis and

[
0
1

]
is spin-down along the

same axis, then the probability of a spin-up measurement is |a|2 and the probability of
a spin-down measurement is |b|2, where normalization is |a|2 + |b|2 = 1.

Slightly more abstractly (though Griffiths doesn’t mention this): if you have some
state |+w⟩ that has deterministic spin up along the axis w, and you can write it is
|+w⟩ = a |+z⟩+ b |−z⟩, where |+z⟩ and |−z⟩ are what Griffiths calls

∣∣1
2

1
2

〉
and

∣∣1
2
(−1

2
)
〉
.

Then you can use |+z⟩ and |−z⟩ to define an orthogonal sesquilinear inner product,
and the probability that any other state |ψ⟩ = c |z⟩ + c |−z⟩ will be found in state |+a⟩
for a spin measurement along a is

| ⟨+w|ψ⟩ |2 = |(a∗ ⟨+z|+ b∗ ⟨+z|)(c |+z⟩+ d |−z⟩)|2 = |a∗c+ b∗d|2

because ⟨+z|+z⟩ = ⟨−z|−z⟩ = 1 and ⟨+z|−z⟩ = ⟨−z|+z⟩ = 0.

Remark on the Stern–Gerlach device. Griffiths makes a slightly obscure remark on
p. 183 that the state in which a spin-1/2 particle with initial state aχ+ + bχ− emerges
from the Stern–Gerlach device, namely(

aeiγTB0/2χ0

)
ei(ωγT/2)z +

(
be−iγTB0/2χ0

)
e−i(ωγT/2)z

has terms with momentum in the z-direction. To see this, remember that eikz is an
eigenstate of the momentum operator pz with eigenvalue (i.e. momentum) k, or simply

note that if you apply the momentum operator pz = −iℏ ∂
∂z

to this state, the large terms
in parentheses can be treated as constants with respect to the differential, which just

extracts ±αγT
2

from each of the z-dependent exponential terms.

Two-particle states. A few bits of formalism implicit in Griffiths’ discussion that it
may help to see spelled out:

1. If the configuration space for one particle is the vector space V , then the configu-
ration space for two particles (for now ignoring considerations for if the particles
are identical: those are covered in Chapter 5) is the tensor product V ⊗V , the set of
ordered pairs of a configuration for the first particle and a configuration for the
second.
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2. The operator S(1) acts on an ordered pair of configurations (v1,v2) as S(1)(v1,v2) =
(Sv1,v2). It’s easy to prove that this is linear as an operator on V 2 if S is linear as
an operator on V .

The formatting of the Clebsch–Gordan coefficient table is a bit hard to understand,
and Griffiths doesn’t explain it well.

1. The large labels such as 1/2× 1/2 denote the spins s1, s2 of each of the two parti-
cles.

2. Each large label introduces a sequence of tables moving down and to the left.
Each entry in the tables has two headers for its row and two headers for its
column. The column headers denote the total state’s values of spin s and z-
component of spin m, and each separate table has the same value of m. Note
that |s1 − s2| ≤ s ≤ s1 + s2 and |m| ≤ s.

3. The row headers denote the z-components m1,m2 of each individual particle,
with m1 +m2 = m.



Chapter 5

Identical particles
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